1
|
Hou J, Gong H, Gong Z, Tan X, Qin X, Nie J, Zhu H, Zhong S. Structural characterization and anti-inflammatory activities of a purified polysaccharide from fruits remnants of Alpinia zerumbet (Pers.) Burtt. et Smith. Int J Biol Macromol 2024; 267:131534. [PMID: 38636158 DOI: 10.1016/j.ijbiomac.2024.131534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
We reported here an interesting source of Alpinia zerumbet Polysaccharides (named AZPs) from the residues after extracting essential oil by steam distillation from Alpinia zerumbet fructus. After a series of purifications, a homogeneous polysaccharide (AZP-2) of molecular weight 1.25 × 105 Da was obtained. Structure, anti-inflammatory activity, and anti-inflammatory mechanism were investigated. AZP-2 was mainly composed of galactose, arabinose, xylopyranose, glucose, and galacturonic acid. The main linkage structure of AZP-2 was determined after integrating the nuclear magnetic resonance (NMR) and methylation analysis, and the structure was comparatively complex. The results indicated that AZP-2 significantly decreased the production of NO and ROS in the inflammatory model established by lipopolysaccharide (LPS) stimulated RAW264.7, particularly at the concentration of 200 μg/mL. Furthermore, AZP-2 significantly modulated the secretion of both pro-inflammatory and anti-inflammatory cytokines. Notably, the mechanism of AZP-2 exhibiting inhibitory effects was related to regulating the NF-κB signaling pathway. Overall, AZP-2 could be used as a potential anti-inflammatory agent for further in-depth studies.
Collapse
Affiliation(s)
- Jiaojiao Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huxuan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- GuangXi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
2
|
Rocha DG, Holanda TM, Braz HLB, de Moraes JAS, Marinho AD, Maia PHF, de Moraes MEA, Fechine-Jamacaru FV, de Moraes Filho MO. Vasorelaxant effect of Alpinia zerumbet's essential oil on rat resistance artery involves blocking of calcium mobilization. Fitoterapia 2023; 169:105623. [PMID: 37500018 DOI: 10.1016/j.fitote.2023.105623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Alpinia zerumbet is a plant from the Zingiberaceae family, popularly used for hypertension treatment. Several studies have demonstrated Alpinia zerumbet vasodilator effect on conductance vessels but not on resistance vessels. Thereby, the aim of this study was to verify the vasodilator effect of the essential oil of Alpinia zerumbet (EOAz) on isolated rat resistance arteries and characterize its mechanism of action. Therefore, the effect of EOAz (3 to 3000 μg/mL) was verified in second-order branches of the mesenteric artery (SOBMA) pre-contracted by KCl and U46619. To study the mechanism of action, the influence of several inhibitors (TEA, 4-AP, Glibenclamide, Atropine, L-NAME, ODQ and indomethacin) on the vasodilator effect of EOAz was evaluated. Some protocols were also performed aiming to study the effect of EOAz on Ca2+ influx and release from intracellular storage. Furthermore, the binding energy of the main constituents with calcium channels were evaluated by molecular docking. Results showed an endothelium-independent vasorelaxant effect of EOAz on SOBMA, and only ODQ and L-NAME produced significant alteration on its pEC50. Regarding the calcium assays, contraction reduction caused by incubation with EOAz was observed in all three protocols. Hence, our results suggest that EOAz has a vasodilator effect mediated by inhibition of Ca2+ influx and release from intracellular storage, as well as an activation of the NOS/sGC pathway.
Collapse
Affiliation(s)
- Danilo Galvão Rocha
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil.
| | - Thais Muratori Holanda
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - João Alison Silveira de Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Pedro Henrique Freitas Maia
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Maria Elisabete Amaral de Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Francisco Vagnaldo Fechine-Jamacaru
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Holanda TM, Rocha DG, Silveira JAM, Costa PPC, Maia PHF, Ingram C, Moraes MEADE, Fechine FV, Moraes Filho MODE. Effect of essential oil of Alpinia zerumbet on cardiovascular and autonomic function in rats with isoproterenol induced acute myocardial infarction. AN ACAD BRAS CIENC 2023; 95:e20201878. [PMID: 37585966 DOI: 10.1590/0001-3765202320201878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 08/18/2023] Open
Abstract
Alpinia zerumbet is a plant popularly used to treat hypertension and anxiety. Studies with Alpinia zerumbet demonstrate antihypertensive and vasodilator effects, among others. The objective of this study was to analyze the effect of essential oil of Alpinia zerumbet (EOAz) on cardiovascular and autonomic function in rats with isoproterenol-induced myocardial infarction. Male Wistar rats (n=32) were equally allocated into four groups: Control, ISO (150mg/kg, subcutaneous), EOAz (100mg/kg by gavage), ISO+EOAz. The rats were evaluated for cardiovascular and, autonomic parameters, electrocardiogram, and infarct size. EOAz was not able to reduce the electrocardiographic variations induced by ISO. Heart rate variability showed a decrease in sympathetic modulation on the heart in the groups treated with EOAz. The cardiopulmonary reflex induced by serotonin invoked a superior blood pressure variation at the 2 µg/kg dose in the EOAz treated groups, while the heart rate variation was significantly higher at the 16 µg/kg dose, when compared to other doses, in all groups, except EOAz+ISO. The sympathetic vagal index was higher in ISO group than in control. EOAz did not reduce the infarct size. We conclude that pretreatment with EOAz does not reverse the hemodynamic and electrocardiographic damage caused by isoproterenol but does reduce sympathetic modulation.
Collapse
Affiliation(s)
- Thais M Holanda
- North Carolina Central University, Biomedical/Biotechnology Research Institute, 700 George Street, Durham, NC 27707, USA
| | - Danilo G Rocha
- Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| | - João Alison M Silveira
- Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| | - Paula Priscila C Costa
- Universidade Federal de Pelotas, Departamento de Clínica Veterinária, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brazil
| | - Pedro Henrique F Maia
- Universidade Federal do Ceará, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| | - Catherine Ingram
- Universidade Federal do Ceará, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| | - Maria Elisabete A DE Moraes
- Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| | - Francisco V Fechine
- Universidade Federal do Ceará, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| | - Manoel O DE Moraes Filho
- Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000, 60430-275 Fortaleza, CE, Brazil
| |
Collapse
|
4
|
Long Y, Li D, Yu S, Zhang YL, Liu SY, Wan JY, Shi A, Deng J, Wen J, Li XQ, Ma Y, Li N, Yang M. Natural essential oils: A promising strategy for treating cardio-cerebrovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115421. [PMID: 35659628 DOI: 10.1016/j.jep.2022.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EO) are volatile compounds obtained from different parts of natural plants, and have been used in national, traditional and folk medicine to treat various health problems all over the world. Records indicate that in history, herbal medicines rich in EO have been widely used for the treatment of CVDs in many countries, such as China. AIM OF THE STUDY This review focused on the traditional application and modern pharmacological mechanisms of herbal medicine EO against CVDs in preclinical and clinical trials through multi-targets synergy. Besides, the EO and anti-CVDs drugs were compared, and the broad application of EO was explained from the properties of drugs and aromatic administration routes. MATERIALS AND METHODS Information about EO and CVDs was collected from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The obtained data sets were sequentially arranged for better understanding of EO' potential. RESULTS The study showed that EO had significant application in CVDs at different countries or regions since ancient times. Aiming at the complex pathological mechanisms of CVDs, including intracellular calcium overload, oxidative stress, inflammation, vascular endothelial cell injury and dysfunction and dyslipidemia, we summarized the roles of EO on CVDs in preclinical and clinical through multi-targets intervention. Besides, EO had the dual properties of drug and excipients. And aromatherapy was one of the complementary therapies to improve CVDs. CONCLUSIONS This paper reviewed the EO on traditional treatment, preclinical mechanism and clinical application of CVDs. As important sources of traditional medicines, EO' remarkable efficacy had been confirmed in comprehensive literature reports, which showed that EO had great medicinal potential.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song-Yu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
5
|
Kamyab R, Namdar H, Torbati M, Ghojazadeh M, Araj-Khodaei M, Fazljou SMB. Medicinal Plants in the Treatment of Hypertension: A Review. Adv Pharm Bull 2021; 11:601-617. [PMID: 34888207 PMCID: PMC8642800 DOI: 10.34172/apb.2021.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/09/2022] Open
Abstract
Traditional medicine is a comprehensive term for ancient, culture-bound health care practices that existed before the use of science in health matters and has been used for centuries. Medicinal plants are used to treat patients with cardiovascular diseases, which may occur due to ailments of the heart and blood vessels and comprise heart attacks, cerebrovascular diseases, hypertension, and heart failure. Hypertension causes difficulty in the functioning of the heart and is involved in atherosclerosis, raising the risk of heart attack and stroke. Many drugs are available for managing these diseases, though common antihypertensive drugs are generally accompanied by many side effects. Medicinal herbs have several active substances with pharmacological and prophylactic properties that can be used in the treatment of hypertension. This review presents an overview of some medicinal plants that have been shown to have hypotensive or antihypertensive properties.
Collapse
Affiliation(s)
- Raha Kamyab
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Namdar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
6
|
da Silva MA, de Carvalho LCRM, Victório CP, Ognibene DT, Resende AC, de Souza MAV. Chemical composition and vasodilator activity of different Alpinia zerumbet leaf extracts, a potential source of bioactive flavonoids. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021; 26:molecules26123506. [PMID: 34207498 PMCID: PMC8227493 DOI: 10.3390/molecules26123506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a global health burden that greatly impact patient quality of life and account for a huge number of deaths worldwide. Despite current therapies, several side effects have been reported that compromise patient adherence; thus, affecting therapeutic benefits. In this context, plant metabolites, namely volatile extracts and compounds, have emerged as promising therapeutic agents. Indeed, these compounds, in addition to having beneficial bioactivities, are generally more amenable and present less side effects, allowing better patient tolerance. The present review is an updated compilation of the studies carried out in the last 20 years on the beneficial potential of essential oils, and their compounds, against major risk factors of CVDs. Overall, these metabolites show beneficial potential through a direct effect on these risk factors, namely hypertension, dyslipidemia and diabetes, or by acting on related targets, or exerting general cellular protection. In general, monoterpenic compounds are the most studied regarding hypotensive and anti-dyslipidemic/antidiabetic properties, whereas phenylpropanoids are very effective at avoiding platelet aggregation. Despite the number of studies performed, clinical trials are sparse and several aspects related to essential oil’s features, namely volatility and chemical variability, need to be considered in order to guarantee their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
8
|
A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8878927. [PMID: 33354224 PMCID: PMC7735857 DOI: 10.1155/2020/8878927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Background Inflammation is a host defense mechanism in the body after it is infected and damaged. If inflammation is not treated in time, then it may cause a variety of diseases, such as cancer and autoimmune diseases. Herbal essential oils are natural extracts that can suppress inflammation effectively and are expected to be used in therapeutic drugs for anti-inflammatory diseases in the future. Aim of the review. We review the anti-inflammatory and immunomodulatory effects of essential oils derived from 16 herbs. Materials and methods. We searched the literature of the fields of anti-inflammatory and immunomodulatory herbal essential oil activity published in English within the past five years via databases (PubMed, EMBASE, Scopus, and The Web of Science). Results A total of 1932 papers were found by searching, and 132 papers were screened after removing duplicates and reading article titles. Fifteen articles met the requirements to be included in this review. Among those selected, 11 articles reported in vivo research results, and 10 articles showed research results. Conclusion Essential oils extracted from herbs can reduce inflammation by regulating the release of inflammatory cytokines involved in multiple signalling pathways. Herbal essential oils are expected to be developed as anti-inflammatory drugs.
Collapse
|
9
|
Xiao T, Huang J, Wang X, Wu L, Zhou X, Jiang F, He Z, Guo Q, Tao L, Shen X. Alpinia zerumbet and Its Potential Use as an Herbal Medication for Atherosclerosis: Mechanistic Insights from Cell and Rodent Studies. Lifestyle Genom 2020; 13:138-145. [PMID: 32882697 DOI: 10.1159/000508818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Alpinia zerumbet (Pers.) Burtt. et Smith has been used as a flavor additive in food and a traditional medicine for centuries, especially in Guizhou Province, China, and it prolongs people's lives with multiple beneficial effects. Thus, one of the aims of this review was to expound the chemical constituents of this plant, especially its fruits. Since cardiovascular diseases, including atherosclerosis, pose a health threat to humans, another aim was to expound the possible mechanisms of its potential use as an herbal medication for atherosclerosis. METHODS In this study, 10 reports are cited to expound the potential bioactive compounds. Moreover, 33 reports explain the antihypertensive and antiatherosclerotic effects of the plant by ameliorating inflammation and endothelial dysfunction, increasing vasodilation, improving hyperlipidemia, downgrading the glucose status, and working as an antioxidant. RESULTS A. zerumbetis rich in terpenes, essential oils, flavonoids, polyphenolics, and sterols. Pharmacological experiments showed that A. zerumbet has antioxidative and anti-inflammatory effects on the NF-κB signaling pathway and can ameliorate oxidative stress in the NOS-NO signaling pathway. Moreover, A. zerumbet demonstrates antihypertensive effects by accelerating vasorelaxant response and increasing 3T3-L1 intracellular cAMP, which has promising antiobesity properties, as well as hypolipidemic and anti-diabetic complication effects. CONCLUSIONS A. zerumbet has potential functions and applications in the prevention of atherosclerosis, but further studies are required before clinical trials.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiaoyan Huang
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaowei Wang
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Linjing Wu
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xue Zhou
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Feng Jiang
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhiyong He
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qianqian Guo
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ling Tao
- Department of Pharmaceutic Preparation of Chinese Medicine, the State Key Laboratory of Functions and Applications of Medicinal Plants, High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China, .,The Department of Pharmacology of Materia Medica, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China,
| |
Collapse
|
10
|
Micucci M, Bolchi C, Budriesi R, Cevenini M, Maroni L, Capozza S, Chiarini A, Pallavicini M, Angeletti A. Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. PHYTOCHEMISTRY 2020; 170:112222. [PMID: 31810054 DOI: 10.1016/j.phytochem.2019.112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hypertension has become the leading risk factor for worldwide cardiovascular diseases. Conventional pharmacological treatment, after both dietary and lifestyle changes, is generally proposed. In this review, we present the antihypertensive properties of phytocomplexes from thirteen plants, long ago widely employed in ethnomedicines and, in recent years, increasingly evaluated for their activity in vitro and in vivo, also in humans, in comparison with synthetic drugs acting on the same systems. Here, we focus on the demonstrated or proposed mechanisms of action of such phytocomplexes and of their constituents proven to exert cardiovascular effects. Almost seventy phytochemicals are described and scientifically sound pertinent literature, published up to now, is summarized. The review emphasizes the therapeutic potential of these natural substances in the treatment of the 'high normal blood pressure' or 'stage 1 hypertension', so-named according to the most recent European and U.S. guidelines, and as a supplementation in more advanced stages of hypertension, however needing further validation by clinical trial intensification.
Collapse
Affiliation(s)
- M Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - C Bolchi
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - R Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Cevenini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - L Maroni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - S Capozza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - A Chiarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Pallavicini
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - A Angeletti
- Unit of Nephrology, Dialysis and Transplantation, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, S.Orsola Malpighi Hospital, Bologna Italy
| |
Collapse
|
11
|
Ji YP, Shi TY, Zhang YY, Lin D, Linghu KG, Xu YN, Tao L, Lu Q, Shen XC. Essential oil from Fructus Alpinia zerumbet (fruit of Alpinia zerumbet (Pers.) Burtt.et Smith) protected against aortic endothelial cell injury and inflammation in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:149-158. [PMID: 30880260 DOI: 10.1016/j.jep.2019.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Alpinia zerumbet (FAZ), a dry and ripe fruit of Alpinia zerumbet (Pers.) Burtt. et Smith, is widely used as a spice to treat cardiovascular diseases in clinic as a miao folk medicine in Guizhou Province of China. Essential oil extracted from FAZ (EOFAZ) is the key bioactive ingredients. AIM OF THE STUDY This study aimed to examine the effects and mechanisms of EOFAZ on lipopolysaccharide (LPS)-induced endothelial cell injury, inflammation and apoptosis in vitro and in vivo. MATERIALS AND METHODS For the in vitro study, LPS-treated human aortic endothelial cells were used to perform PCR, western blot analysis and immunofluorescence. For the in vivo study, male mouse were divided into four groups, vehicle control group and LPS group received 0.5% Tween-80 in saline; and two EOFAZ groups receive different dose of EOFAZ (90 mg kg -1·day-1, 180 mg kg -1·day-1) respectively. Each group was fed for 7 days by intragastrical administration at daily base. Then, except vehicle control group received saline, mice in other three groups were administered with LPS (1 mg kg -1, dissolved in saline) by intraperitoneal injection. 24 h later, Aorta tissue was collected and frozen immediately in liquid N2, stored at -80 °C for western blot analysis. RESULTS We found that EOFAZ completely prevented LPS-induced HAEC activation and inflammation in vitro and in vivo, as assessed by expression of endothelial adhesion molecules, ICAM-1 and VCAM-1. Similarly, EOFAZ significantly blunted LPS-induced endothelial injury, as tested by MTT assay, LDH release and caspase-3 activation. We further demonstrated that TLR4-dependent NF-κB signaling may be involved in the process. CONCLUSION EOFAZ protected against LPS-induced endothelial cell injury and inflammation likely via inhibition of TLR4-dependent NF-κB signaling.
Collapse
Affiliation(s)
- Yun-Peng Ji
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Ting-Yu Shi
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Department of Neonatal Disease Screening, Shenyang Maternity and Child Health Hospital, Shenyang City, Liaoning Province, China
| | - Yan-Yan Zhang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Dan Lin
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Ke-Gang Linghu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Yi-Ni Xu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Ling Tao
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/ Alpert Medical School of Brown University, Providence, RI, USA.
| | - Xiang-Chun Shen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Drug Ability, The Union Key Laboratory of Guiyang City-Guizhou Medical Univeristy, The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China.
| |
Collapse
|
12
|
Guzman E, Molina J. The predictive utility of the plant phylogeny in identifying sources of cardiovascular drugs. PHARMACEUTICAL BIOLOGY 2018; 56:154-164. [PMID: 29486635 PMCID: PMC6130559 DOI: 10.1080/13880209.2018.1444642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT Cardiovascular disease (CVD) is the number one cause of death globally, responsible for over 17 million (31%) deaths in the world. Novel pharmacological interventions may be needed given the high prevalence of CVD. OBJECTIVE In this study, we aimed to find potential new sources of cardiovascular (CV) drugs from phylogenetic and pharmacological analyses of plant species that have experimental and traditional CV applications in the literature. MATERIALS AND METHODS We reconstructed the molecular phylogeny of these plant species and mapped their pharmacological mechanisms of action on the phylogeny. RESULTS Out of 139 plant species in 71 plant families, seven plant families with 45 species emerged as phylogenetically important exhibiting common CV mechanisms of action within the family, as would be expected given their common ancestry: Apiaceae, Brassicaceae, Fabaceae, Lamiaceae, Malvaceae, Rosaceae and Zingiberaceae. Apiaceae and Brassicaceae promoted diuresis and hypotension; Fabaceae and Lamiaceae had anticoagulant/thrombolytic effects; Apiaceae and Zingiberaceae were calcium channel blockers. Moreover, Apiaceae, Lamiaceae, Malvaceae, Rosaceae and Zingiberaceae species were found to possess anti-atherosclerotic properties. DISCUSSION AND CONCLUSIONS The phylogeny identified certain plant families with disproportionately more species, highlighting their importance as sources of natural products for CV drug discovery. Though there were some species that did not show the same mechanism within the family, the phylogeny predicts that these species may contain undiscovered phytochemistry, and potentially, the same bioactivity. Evolutionary pharmacology, as applied here, may guide and expedite our efforts in discovering sources of new CV drugs.
Collapse
Affiliation(s)
- Emily Guzman
- Department of Biology, Long Island University, Brooklyn, NY, USA
| | - Jeanmaire Molina
- Department of Biology, Long Island University, Brooklyn, NY, USA
| |
Collapse
|
13
|
Bartoňková I, Dvořák Z. Assessment of endocrine disruption potential of essential oils of culinary herbs and spices involving glucocorticoid, androgen and vitamin D receptors. Food Funct 2018; 9:2136-2144. [PMID: 29629442 DOI: 10.1039/c7fo02058a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Essential oils (EOs) of culinary herbs and spices are consumed on a daily basis. They are multicomponent mixtures of compounds with already demonstrated biological activities. Taking into account regular dietary intake and the chemical composition of EOs, they may be considered as candidates for endocrine-disrupting entities. Therefore, we examined the effects of 31 EOs of culinary herbs and spices on transcriptional activities of glucocorticoid receptor (GR), androgen receptor (AR) and vitamin D receptor (VDR). Using reporter gene assays in stably transfected cell lines, weak anti-androgen and anti-glucocorticoid activity was observed for EO of vanilla and nutmeg, respectively. Moderate augmentation of calcitriol-dependent VDR activity was caused by EOs of ginger, thyme, coriander and lemongrass. Mixed anti-glucocorticoid and VDR-stimulatory activities were displayed by EOs of turmeric, oregano, dill, caraway, verveine and spearmint. The remaining 19 EOs were inactive against all receptors under investigation. Analyses of GR, AR and VDR target genes by means of RT-PCR confirmed the VDR-stimulatory effects, but could not confirm the anti-glucocorticoid and anti-androgen effects of EOs. In conclusion, although we observed minor effects of several EOs on transcriptional activities of GR, AR and VDR, the toxicological significance of these effects is very low. Hence, 31 EOs of culinary herbs and spices may be considered safe, in terms of endocrine disruption involving receptors GR, AR and VDR.
Collapse
Affiliation(s)
- Iveta Bartoňková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| | | |
Collapse
|
14
|
Teschke R, Xuan TD. Viewpoint: A Contributory Role of Shell Ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for Human Longevity in Okinawa, Japan? Nutrients 2018; 10:nu10020166. [PMID: 29385084 PMCID: PMC5852742 DOI: 10.3390/nu10020166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
The longevity of the population in the Okinawa Islands of Japan has been ascribed to genetic factors and the traditional Okinawa cuisine, which is low in calories and high in plant content. This diet includes shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) of the ginger family (Zingiberaceae). Due to its local popularity, Alpinia zerumbet has become the subject of a good deal of study at the University of the Ryukyus in Okinawa. Personal local experience and review of the literature now suggest that culinary shell ginger may contribute to longevity among the population in Okinawa. This is supported by its abundant phytochemical content, with antioxidant and anti-obesity properties. The major bioactive phytochemicals are dihydro-5,6-dehydrokawain (DDK; 80-410 mg g-1 fresh weight), 5,6-dehydrokawain (DK; ≤100 mg g-1), and essential oils, phenols, phenolic acids, and fatty acids (≤150 mg g-1 each). Further, Alpinia zerumbet extends the lifespan in animals by 22.6%. In conclusion, culinary shell ginger may significantly contribute to human longevity in Okinawa.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/ Main, Germany.
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| |
Collapse
|
15
|
Gas Chromatography-Triple Quadrupole Mass Spectrometry Analysis and Vasorelaxant Effect of Essential Oil from Protium heptaphyllum (Aubl.) March. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1928171. [PMID: 28951867 PMCID: PMC5603114 DOI: 10.1155/2017/1928171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023]
Abstract
The Protium heptaphyllum species, also known as Almécega, produces an oily resin, used in folk medicine as an analgesic and anti-inflammatory agent, in healing, and as an expectorant, which is rich in pentacyclic triterpenes and essential oils. In this study, the essential oil obtained by hydrodistillation of Almécega's resin was analyzed by gas chromatography-triple quadrupole mass spectrometry and evaluated for chemical composition and vasorelaxant activity in rat superior mesenteric artery. The main constituents determined by gas chromatography-triple quadrupole mass spectrometry were limonene, p-cineole, and o-cymene. In intact rings precontracted with phenylephrine (Phe 1 μM), EOPh (3–750 μg/mL) induced relaxation, and the essential oil had a concentration-dependent vasorelaxant effect, without involvement of endothelial mediators.
Collapse
|
16
|
Gondim ANS, Lara A, Santos-Miranda A, Roman-Campos D, Lauton-Santos S, Menezes-Filho JER, de Vasconcelos CML, Conde-Garcia EA, Guatimosim S, Cruz JS. (-)-Terpinen-4-ol changes intracellular Ca 2+ handling and induces pacing disturbance in rat hearts. Eur J Pharmacol 2017; 807:56-63. [PMID: 28435092 DOI: 10.1016/j.ejphar.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
(-)-Terpinen-4-ol is a naturally occurring plant monoterpene and has been shown to have a plethora of biological activities. The objective of this study was to investigate the effects of (-)-terpinen-4-ol on the rat heart, a key player in the control and maintenance of arterial blood pressure. The effects of (-)-terpinen-4-ol on the rat heart were investigated using isolated left atrium isometric force measurements, in vivo electrocardiogram (ECG) recordings, patch clamp technique, and confocal microscopy. It was observed that (-)-terpinen-4-ol reduced contraction force in an isolated left atrium at millimolar concentrations. Conversely, it induced a positive inotropic effect and extrasystoles at micromolar concentrations, suggesting that (-)-terpinen-4-ol may have arrhythmogenic activity on cardiac tissue. In anaesthetized animals, (-)-terpinen-4-ol also elicited rhythm disturbance, such as supraventricular tachycardia and atrioventricular block. To investigate the cellular mechanism underlying the dual effect of (-)-terpinen-4-ol on heart muscle, experiments were performed on isolated ventricular cardiomyocytes to determine the effect of (-)-terpinen-4-ol on L-type Ca2+ currents, Ca2+ sparks, and Ca2+ transients. The arrhythmogenic activity of (-)-terpinen-4-ol in vitro and in vivo may be explained by its effect on intracellular Ca2+ handling. Taken together, our data suggest that (-)-terpinen-4-ol has cardiac arrhythmogenic activity.
Collapse
Affiliation(s)
- Antonio Nei Santana Gondim
- Departamento de Educação - Campus XII, Universidade do Estado da Bahia, Av. Vanessa Cardoso e Cardoso, s/n, Postal Code 46430-000 Guanambi, BA, Brazil; Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Aline Lara
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco D-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Artur Santos-Miranda
- Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Danilo Roman-Campos
- Laboratório de Biofísica, Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu 862, Vila Clementino, Zipcode 04023-062 São Paulo, SP, Brazil
| | - Sandra Lauton-Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - José Evaldo Rodrigues Menezes-Filho
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Carla Maria Lins de Vasconcelos
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Eduardo Antonio Conde-Garcia
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco D-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Jader S Cruz
- Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Yuan TY, Chen YC, Zhang HF, Li L, Jiao XZ, Xie P, Fang LH, Du GH. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes. Acta Pharmacol Sin 2016; 37:604-16. [PMID: 27041459 DOI: 10.1038/aps.2015.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
AIM DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. METHODS Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca(2+) concentrations were detected with Fluo-3 AM. RESULTS Pretreatment with DL0805-2 (1-100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10(-7) mol/L) or accumulative addition of Ang II (10(-10)-10(-7) mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca(2+) influx and intracellular Ca(2+) mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca(2+) fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. CONCLUSION DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes.
Collapse
|
18
|
Anwar MA, Al Disi SS, Eid AH. Anti-Hypertensive Herbs and Their Mechanisms of Action: Part II. Front Pharmacol 2016; 7:50. [PMID: 27014064 PMCID: PMC4782109 DOI: 10.3389/fphar.2016.00050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/22/2016] [Indexed: 01/20/2023] Open
Abstract
Traditional medicine has a history extending back to thousands of years, and during the intervening time, man has identified the healing properties of a very broad range of plants. Globally, the use of herbal therapies to treat and manage cardiovascular disease (CVD) is on the rise. This is the second part of our comprehensive review where we discuss the mechanisms of plants and herbs used for the treatment and management of high blood pressure. Similar to the first part, PubMed and ScienceDirect databases were utilized, and the following keywords and phrases were used as inclusion criteria: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine, endothelial cells, nitric oxide (NO), vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B (NF-κB), oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with plant or herb in question, and where possible with its constituent molecule(s). This part deals in particular with plants that are used, albeit less frequently, for the treatment and management of hypertension. We then discuss the interplay between herbs/prescription drugs and herbs/epigenetics in the context of this disease. The review then concludes with a recommendation for more rigorous, well-developed clinical trials to concretely determine the beneficial impact of herbs and plants on hypertension and a disease-free living.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Sara S Al Disi
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
19
|
Huo L, Zhang J, Qu Z, Chen H, Li Y, Gao W. Vasorelaxant effects of Shunaoxin pill are mediated by NO/cGMP pathway, HO/CO pathway and calcium channel blockade in isolated rat thoracic aorta. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:352-360. [PMID: 26239154 DOI: 10.1016/j.jep.2015.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shunaoxin pill (SNX), one of the famous classical recipes in traditional Chinese medicine, is developed from the "Decoction of Xionggui". It has been used for treatment of cerebrovascular related diseases. It is well known that vasodilatation plays a very important role in cerebrovascular diseases. The effect of SNX on vasorelaxant activity has not yet been explored. Therefore, we aimed to investigate the vasorelaxant effects of SNX on isolated rat thoracic aorta so as to assess some of the possible mechanisms. We also investigate the gasotransmitter signaling pathway involved which has been rarely reported in isolated rat thoracic aorta before. AIM OF THE STUDY The present study was performed to examine the vasodilative activity of SNX and its mechanisms in isolated rat thoracic aorta. MATERIALS AND METHODS SNX was studied on isolated rat thoracic aorta in vitro, including endothelium-intact and endothelium-denuded aortic rings. In present study, specific inhibitors including soluble guanylate cyclase (sGC) inhibitor 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), cyclooxygenase (COX) inhibitor indomethacin (INDO), NO synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME), heme oxygenase-1 (HO-1) inhibitor zinc-protoporphyrin (ZnPP), cystathionine γ-lyase (CSE) inhibitor DL-Propargylglycine (PAG), non-selective K(+) channel inhibitor tetraethylammonium chloride (TEA), KV channel inhibitor 4-Aminopyridine (4-AP), and KATP channel inhibitor Glibenclamide (Gli) were used, they were added 20min before NE contraction and then added SNX to induce vasodilation. RESULTS Removal of endothelium or pretreatment of aortic rings (intact endothelium) with L-NAME, ODQ or ZnPP significantly blocked SNX-induced relaxation. Pretreatment with the non-selective K(+) channel inhibitor TEA, KV channel inhibitor 4-AP or the KATP channel inhibitor Gli, none of them had influences on the SNX-induced response (p>0.05). Besides, SNX inhibited the contraction triggered by NE in endothelium-denuded rings in Ca(2+)-free medium. SNX also produced rightward parallel displacement of CaCl2 curves. CONCLUSIONS These results suggest that SNX can induce less endothelium-dependent and more endothelium-independent vascular relaxation. The NO/cGMP and HO/CO pathways, blockade of Ca(2+) channels are inhibition of IP3R mediated Ca(2+) mobilization from intracellular stores, are likely involved in this relaxation. Furthermore, the underlying mechanisms of combined compositions in SNX await further investigations.
Collapse
Affiliation(s)
- Liqin Huo
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Jingze Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China; Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Zhuo Qu
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Hong Chen
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
20
|
Maia MON, Dantas CG, Xavier Filho L, Cândido EAF, Gomes MZ. The Effect ofAlpinia zerumbetEssential Oil on Post-Stroke Muscle Spasticity. Basic Clin Pharmacol Toxicol 2015; 118:58-62. [DOI: 10.1111/bcpt.12439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Affiliation(s)
| | - Camila Gomes Dantas
- Tiradentes University; Aracaju/SE Brazil
- Research and Technology Institute (ITP); Aracaju/SE Brazil
| | - Lauro Xavier Filho
- Tiradentes University; Aracaju/SE Brazil
- Research and Technology Institute (ITP); Aracaju/SE Brazil
| | | | - Margarete Zanardo Gomes
- Tiradentes University; Aracaju/SE Brazil
- Research and Technology Institute (ITP); Aracaju/SE Brazil
| |
Collapse
|
21
|
Santos MEP, Moura LHP, Mendes MB, Arcanjo DDR, Monção NBN, Araújo BQ, Lopes JAD, Silva-Filho JC, Fernandes RM, Oliveira RCM, Citó AMGL, Oliveira AP. Hypotensive and vasorelaxant effects induced by the ethanolic extract of the Mimosa caesalpiniifolia Benth. (Mimosaceae) inflorescences in normotensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:120-128. [PMID: 25683301 DOI: 10.1016/j.jep.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caatinga is highly influenced by its seasonality. This species is endemic in the northeastern region, which is rich in plants with pharmacological potential. Many of these plants are used by the population and some of them have confirmed pharmacological properties. Mimosa caesalpiniifolia Benth. (Mimosaceae) is a native plant from northeastern Brazil׳s caatinga, popularly known as sabiá and cascudo. The tea from the inflorescence of this species is used by the population of the semi-arid for the treatment of hypertension, and the utilization of the plant bark for the staunching of bleedings and wound washing in order to prevent inflammation; also, the ingestion of the bark infusion is used in the treatment of bronchitis. However, its pharmacological effects and mechanisms of action have not yet been studied. The aim of the present study was to determine the effect of the ethanolic extract of M. caesalpiniifolia on the cardiovascular system in rats. MATERIAL AND METHODS In a study for the assessment of the hypotensive effect of the extract, the polyethylene catheters were inserted in the aorta artery and inferior vena cava for the measurement of the arterial pressure and heart rate. When intragastric administration was performed, only one catheter was implanted in the abdominal aorta. In studies for the vasorelaxant activity, mesenteric arterial rings (1-2mm) were used: they were kept in Tyrode׳s solution (95% O2 and 5% CO2) and submitted to tension of 0.75 g/f for 1h. The results were expressed as mean ± S.E.M., significant to the values of p<0.05. RESULTS The administration of the doses through venous pathway (6.25; 12.5 and 25mg/kg, i.v.) promoted hypotension followed by bradycardia in the higher doses. The pre-treatment with atropine (2mg/kg, i.v.) interrupted both the hypotension and the bradycardia; with hexamethonium, hypotension was reverted and bradycardia was attenuated. While the administration of tea/flowers (25mg/kg i.v.) also promoted a following section of hypotension, a slight increase in heart rate was observed. When administered orally, MC-EtOH/flowers (100mg/kg, v.o.) promoted a decrease in the arterial pressure from 90 min on, without a significant alteration in the heart rate in relation to the control. In the in vitro study, a pharmacological trial was performed with the extracts obtained from parts of the species M. caesalpiifolia (leaves, bark, fruit and inflorescences). Among all extracts tested, the ethanolic extract from the inflorescences (MC-EtOH/flowers) presented higher vasorelaxant potency in relation to the other parts of the plant. Henceforth, MC-EtOH/flowers was used in the sequence. In mesenteric preparations pre-contracted with phenylephrine (10(-5)M), the MC-EtOH/flowers (0.1-750 µg/ml) promoted vasorelaxant effect regardless of the vascular endothelium. MC-EtOH/flowers inhibited the contractions induced by the cumulative addition of phenylephrine (10(-9)-10(-5)mol/l) or CaCl2 (10(-6)-3 × 10(-2)M), in a concentration-dependent way. In contractions induced by S(-)Bay K 8644, a Cav-L activator, the MC-EtOH/flowers promoted concentration-dependent relaxation, corroborating previous results. CONCLUSION The tea of flowers of M. caesalpiniifolia promotes hypotension and tachycardia, whereas ethanolic extract (MC-EtOH) promotes hypotension and bradycardia involving the participation of the muscarinic and ganglionic pathways, as well as vasorelaxant action involving the Ca(2+) influx inhibition blockade.
Collapse
Affiliation(s)
- M E P Santos
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - L H P Moura
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - M B Mendes
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - D D R Arcanjo
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - N B N Monção
- Department of Chemistry, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - B Q Araújo
- Department of Chemistry, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - J A D Lopes
- Department of Chemistry, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - J C Silva-Filho
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - R M Fernandes
- Department of Veterinary Medicine, Federal University of Piauí, 64049-550, Terezina, PI, Brazil
| | - R C M Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - A M G L Citó
- Department of Chemistry, Federal University of Piauí, 64049-550 Terezina, PI, Brazil
| | - A P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Terezina, PI, Brazil.
| |
Collapse
|
22
|
Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes. Molecules 2014; 19:16656-71. [PMID: 25322285 PMCID: PMC6270905 DOI: 10.3390/molecules191016656] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/22/2014] [Accepted: 10/10/2014] [Indexed: 12/05/2022] Open
Abstract
Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.
Collapse
|
23
|
Jorge VG, Ángel JRL, Adrián TS, Francisco AC, Anuar SG, Samuel ES, Ángel SO, Emmanuel HN. Vasorelaxant activity of extracts obtained from Apium graveolens: possible source for vasorelaxant molecules isolation with potential antihypertensive effect. Asian Pac J Trop Biomed 2013; 3:776-9. [PMID: 24075341 DOI: 10.1016/s2221-1691(13)60154-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/28/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate vasorelaxant effect of organic extracts from Apium graveolens (A. graveolens) which is a part of a group of plants subjected to pharmacological and phytochemical study with the purpose of offering it as an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects. METHODS An ex vivo method was employed to assess the vasorelaxant activity. This consisted of using rat aortic rings with and without endothelium precontracted with norepinephrine. RESULTS All extracts caused concentration-dependent relaxation in precontracted aortic rings with and without endothelium; the most active extracts were Dichloromethane and Ethyl Acetate extracts from A. graveolens. These results suggested that secondary metabolites responsible for the vasorelaxant activity belong to a group of compounds of medium polarity. Also, our evidence showed that effect induced by dichloromethane and ethyl acetate extracts from A. graveolens is mediated probably by calcium antagonism. CONCLUSIONS A. graveolens represents an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects.
Collapse
Affiliation(s)
- Vergara-Galicia Jorge
- Division of Health Sciences, University of Quintana roo, Chetumal, Quintana Roo, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|