1
|
Strauss-Kruger M, Pieters M, van Zyl T, Gafane-Matemane LF, Mokwatsi GG, Jacobs A, Schutte AE, Louw R, Mels CM. Metabolomic Insights on Potassium Excretion, Blood Pressure, and Glucose Homeostasis: The African-PREDICT Study. J Nutr 2024; 154:435-445. [PMID: 38110181 DOI: 10.1016/j.tjnut.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Low-potassium intake is associated with a higher risk of type 2 diabetes and hypertension. Both conditions occur more frequently in Black populations, who also consume less potassium-rich foods. OBJECTIVES Using metabolomics to identify dysregulated metabolic pathways associated with low-potassium excretion may procure more accurate entry points for nutritional prevention and intervention for type 2 diabetes and hypertension. METHODS A total of 440 White and 350 Black adults from the African-PREDICT study (aged 20-30 y) were included. Twenty-four-hour blood pressure (BP) was measured. Potassium, sodium, and fasting glucose concentrations were analyzed in 24-h urine and plasma samples. Liquid chromatography-tandem mass spectrometry-based metabolomics included the analyses of amino acids and acylcarnitines in spot urine samples. RESULTS Black participants had lower urinary potassium concentrations than Whites (36.6 compared with 51.1 mmol/d; P < 0.001). In White but not Black adults, urinary potassium correlated positively with 2-aminoadipic acid (2-AAA) (r = 0.176), C3-[propionyl]carnitine (r = 0.137), C4-[butyryl]carnitine (r = 0.169) and C5-[isovaleryl]carnitine (r = 0.167) in unadjusted and 2-AAA (r = 0.158) and C4-carnitine (r = 0.160) in adjusted analyses (all P < 0.05 and q < 0.05). Elevated C0-, C3-, and C5-carnitine in turn were positively associated with systolic BP (Black and White groups), diastolic BP (Black group), and glucose (White group) (all P < 0.05). CONCLUSIONS Racial differences are an important consideration when investigating nutrient-metabolite relationships and the role thereof in cardiovascular disease. Only in White adults did urinary potassium associate with 2-AAA and short-chain acylcarnitines. These metabolites were positively related to BP and fasting plasma glucose concentrations. In White adults, the metabolomic profiles related to potassium excretion may contribute to BP regulation and glucose homeostasis. This trial was registered at clinicaltrials.gov as NCT03292094.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Marlien Pieters
- MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa; Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, North-West Province, South Africa
| | - Tertia van Zyl
- MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa; Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, North-West Province, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Gontse G Mokwatsi
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa; School of Population Health, University of New South Wales, Sydney, New South Wales, Australia; The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom, North-West Province, South Africa
| | - Catharina Mc Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, North-West Province, South Africa; MRC Extramural Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa.
| |
Collapse
|
2
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China,Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China,Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
3
|
Sulforaphane Regulates eNOS Activation and NO Production via Src-Mediated PI3K/Akt Signaling in Human Endothelial EA.hy926 Cells. Molecules 2022; 27:molecules27175422. [PMID: 36080190 PMCID: PMC9457638 DOI: 10.3390/molecules27175422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Sulforaphane (SFN) is a naturally occurring isothiocyanate that is abundant in many cruciferous vegetables, such as broccoli and cauliflower, and it has been observed to exert numerous biological activities. In the present study, we investigate the effect of SFN on eNOS, a key regulatory enzyme of vascular homeostasis and underlying intracellular pathways, in human endothelial EA.hy926 cells. The results indicate that SFN treatment significantly increases NO production and eNOS phosphorylation in a time- and dose-dependent fashion and also augments Akt phosphorylation in a time- and dose-dependent manner. Meanwhile, pretreatment with LY294002 (a specific PI3K inhibitor) suppresses the phosphorylation of eNOS and NO production. Furthermore, SFN time- and dose-dependently induces the phosphorylation of Src kinase, a further upstream regulator of PI3K, while PP2 pretreatment (a specific Src inhibitor) eliminates the increase in phosphorylated Akt, eNOS and the production of NO derived from eNOS. Overall, the present study uncovers a novel effect of SFN to stimulate eNOS activity in EA.hy926 cells by regulating NO bioavailability. These findings provide clear evidence that SFN regulates eNOS activity and NO bioavailability, suggesting a promising therapeutic candidate to prevent endothelial dysfunction, atherosclerosis and other cardiovascular diseases.
Collapse
|
4
|
Mechanisms underlying the effects of caloric restriction on hypertension. Biochem Pharmacol 2022; 200:115035. [DOI: 10.1016/j.bcp.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
|
5
|
Yu Y, Xu LS, Wu Y, Su FF, Zhou XM, Xu C. The antihypertensive effect of MK on spontaneously hypertensive rats through the AMPK/Akt/eNOS/NO and ERK1/2/Cx43 signaling pathways. Hypertens Res 2021; 44:781-790. [PMID: 33707758 DOI: 10.1038/s41440-021-00638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
We investigated the antihypertensive effects of maximakinin (MK) on spontaneously hypertensive rats (SHRs). The effects of MK on arterial blood pressure in SHRs were observed, and flow cytometry and 4,5-diaminofluorescein-2 staining were used to examine MK-induced nitric oxide (NO) release in human umbilical vein endothelial cells (HUVECs). Western blotting was used to analyze the effects of MK on the expression of AMP-activated protein kinase (AMPK), Akt, Connexin 43, ERK1/2, p38, and p-eNOS in HUVECs. The results showed that MK induced a more significant antihypertensive effect on SHRs than bradykinin (BK). MK induced significant increases in endothelial nitric oxide synthase (eNOS) phosphorylation and NO release in HUVECs. MK also significantly increased the phosphorylation of Akt and AMPK in HUVECs. The AMPK inhibitor compound C blocked the effect of MK on the generation of NO. MK induced the phosphorylation of ERK1/2, p38, and Connexin 43. The expression of p-Connexin 43 was significantly decreased in the presence of the ERK1/2 inhibitor U0126 but not the p38 inhibitor SB203580. The effects of MK on the phosphorylation of AMPK and ERK1/2 were significantly decreased by the BK B2 receptor inhibitor HOE-140. In summary, MK can significantly reduce blood pressure in SHRs. The antihypertensive effect might be mediated through the activation of the BK B2 receptor, while the downstream AMPK/PI3K/Akt/eNOS/NO and ERK1/2/Connexin 43 signaling pathways play additional roles.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Li-Shi Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yue Wu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Fan-Fan Su
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiao-Mian Zhou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Horinouchi T, Mazaki Y, Terada K, Miwa S. Cigarette Smoke Extract and Its Cytotoxic Factor Acrolein Inhibit Nitric Oxide Production in Human Vascular Endothelial Cells. Biol Pharm Bull 2020; 43:1804-1809. [PMID: 32879145 DOI: 10.1248/bpb.b20-00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acrolein (ACR), a highly reactive α,β-unsaturated aldehyde, is a major cytotoxic factor in nicotine- and tar-free cigarette smoke extract (CSE). There are conflicting results regarding endothelial functions despite the fact that both CSE and ACR cause cellular damage. Several lines of evidence indicate that CSE impairs endothelium-derived nitric oxide (NO)-dependent vasodilation by reducing the activity and protein expression of endothelial NO synthase (eNOS), whereas ACR elicits endothelium-dependent vasorelaxation by increasing the production of NO and expression of eNOS. To clarify whether CSE and its cytotoxic factor ACR cause endothelial dysfunction, this study examined the effects of CSE and ACR on human vascular endothelial EA.hy926 cells. CSE and ACR reduced the phosphorylation of eNOS at serine (Ser)1177 and total expression of eNOS. The CSE- and ACR-induced decrease in the phosphorylation and expression of eNOS was counteracted by glutathione (reduced form), an antioxidant. Basal NO production was inhibited by CSE, ACR, NG-nitro-L-arginine methyl ester (a competitive eNOS inhibitor), and nominally Ca2+-free solution supplemented with BAPTA-AM (a membrane permeable Ca2+ chelator). These results indicate that CSE and ACR increase oxidative stress, and reduce NO production by reducing the activity and total protein level of eNOS.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Koji Terada
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
7
|
Luhong Formula Has a Cardioprotective Effect on Left Ventricular Remodeling in Pressure-Overloaded Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4095967. [PMID: 32565857 PMCID: PMC7277070 DOI: 10.1155/2020/4095967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Background Luhong formula (LHF)-a traditional Chinese medicine containing Cervus nippon Temminck, Carthamus tinctorius L., Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, Codonopsis pilosula (Franch.) Nannf., Cinnamomum cassia Presl, and Lepidium apetalum Willd-is used in the treatment of heart failure, but little is known about its mechanism of action. We have investigated the effects of LHF on antifibrosis. Methods Forty-eight SD male rats were randomly assigned into six groups (n = 8), model group, sham-operation group, perindopril group (0.036 mg/ml), LHF high doses (LHF-H, 1.44 g/mL), LHF middle doses (LHF-M, 0.72 g/mL), and LHF low doses (LHF-L, 0.36 g/mL). Except the sham-operation group, the other groups were received an abdominal aorta constriction to establish a model of myocardial hypertrophy. The HW and LVW were measured to calculate the LVW/BW and HW/BW. ELISA was used to detect the serum concentration of BNP. The expressions of eNOS, TGF-β1, caspase-3, VEGF, and VEGFR2 in heart tissues were assessed by western blot analysis. mRNA expressions of eNOS, Col1a1, Col3a1, TGF-β1, VEGF, and VEGFR2 in heart tissues were measured by RT-PCR. The specimens were stained with hematoxylin-eosin (HE) and picrosirius red staining for observing the morphological characteristics and collagen fibers I and III of the myocardium under a light microscope. Results LHF significantly lowered the rat's HW/BW and LVM/BW, and the level of BNP in the LHF-treated group compared with the model group. Histopathological and pathomorphological changes of collagen fibers I and III showed that LHF inhibited myocardial fibrosis in heart failure rats. Treatment with LHF upregulated eNOS expression in heart tissue and downregulated Col1a1, Col3a1, TGF-β1, caspase-3, VEGF, and VEGFR2 expression. Conclusion LHF can improve left ventricular remodeling in a pressure-overloaded heart failure rat model; this cardiac protective ability may be due to cardiac fibrosis and attenuated apoptosis. Upregulated eNOS expression and downregulated Col1a1, Col3a1, TGF-β1, caspase-3, VEGF, and VEGFR2 expression may play a role in the observed LHF cardioprotective effect.
Collapse
|
8
|
Zhao Y, Zhu J, Liang H, Yang S, Zhang Y, Han W, Chen C, Cao N, Aruhan, Liang P, Du X, Huang J, Wang J, Zhang Y, Yang B. Kang Le Xin Reduces Blood Pressure Through Inducing Endothelial-Dependent Vasodilation by Activating the AMPK-eNOS Pathway. Front Pharmacol 2020; 10:1548. [PMID: 32038237 PMCID: PMC6990110 DOI: 10.3389/fphar.2019.01548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is a major risk factor for stroke and cardiovascular events in clinic, which is accompanied by the abnormality of vascular tone and endothelial dysfunction of small artery. Here we report that Kang Le Xin (KLX), a novel anthraquinones compound, could reduce blood pressure and the underlying mechanisms involves that KLX induces endothelium-dependent vasodilation. KLX significantly decreases the arterial blood pressure of spontaneous hypertensive rats (SHR), decreases the contractile reactivity of superior mesenteric artery to phenylephrine and increases the vasodilatory reactivity of superior mesenteric artery to carbachol in a dose-dependent manner. Besides, KLX reduces vascular tension of endothelium-intact mesenteric artery pre-constricted with phenylephrine in a dose-dependent manner, while this effect is inhibited by depriving vascular endothelium or pretreating vascular rings with L-NAME (endothelial nitric oxide synthase inhibitor) or compound C (AMP-activated protein kinase inhibitor). Moreover, KLX increases nitric oxide (NO) generation, endothelial nitric oxide synthase (eNOS), AKT and AMP-activated protein kinase (AMPK) phosphorylation in cultured human umbilical vein endothelial cells (HUVECs), while these effects are inhibited by pretreating cells with compound C. In conclusion, KLX is a new compound with the pharmacological action of reducing arterial blood pressure. The underlying mechanism involves KLX induces endothelium-dependent vasodilation through activating AMPK-AKT-eNOS signaling pathway.
Collapse
Affiliation(s)
- Yixiu Zhao
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiuxin Zhu
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hangfei Liang
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuang Yang
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yannan Zhang
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weina Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao Chen
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na Cao
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Aruhan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Peiqiang Liang
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xing Du
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Zhang
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- State-Province Key Labratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Chen L, Qin L, Liu X, Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 2020; 42:1350-1359. [PMID: 30887395 DOI: 10.1007/s10753-019-00996-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel, certified, adipokine that beneficially regulates metabolism and inflammation in the cardiovascular system. Atherosclerotic plaque rupturing and secondary thrombosis cause vascular disorders, such as myocardial infarction and unstable angina. However, the underlying role of CTRP3 in atherosclerosis remains unclear. In this study, we aimed to elucidate whether and how CTRP3 ameliorates inflammation and endothelial dysfunction caused by oxidized low-density lipoprotein (ox-LDL). We first confirmed that CTRP3 expression was inhibited in ApoE-/- mice, compared to normal mice. Then, pcDNA-CTRP3 and siCTRP3 were transfected into mouse aortic endothelial cells after ox-LDL stimulation, and we observed that enhanced CTRP3 remarkably downregulated CRP, TNF-α, IL-6, CD40, and CD40L. We also observed that overexpression of CTRP3 elevated cell activity and decreased lactated hydrogenase release, accompanied by a marked reduction in cell apoptosis induced by ox-LDL. Meanwhile, overexpressed CTRP3 caused a decrease in Ang II, ICAM-1, and VCAM-1 expression, and it restored the balance between ET-1 and NO. Mechanism analysis confirmed that incremental CTRP3 upregulated p-PI3K, p-Akt, and p-eNOS expression, indicating that CTRP3 facilitated activation of the PI3K/Akt/eNOS pathway. On the contrary, siCTRP3 exerted the opposite effect to this activation. Blocking these pathways using LY294002 or L-NAME attenuated the protective role of CTRP3. Overall, these results suggest that CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunction induced by ox-LDL in mouse aortic endothelial cells, perhaps by activating the PI3K/Akt/eNOS pathway, indicating a promising strategy against atherosclerosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Medicine, Gansu Provincial Hospital of TCM, No. 418, Guazhou Road, Qilihe District, Lanzhou City, 730050, Gansu, People's Republic of China.
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xin Liu
- Department of Rheumatic Osteopathology, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| | - Xiangyun Meng
- Central Laboratory, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| |
Collapse
|
10
|
Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines. Acta Pharmacol Sin 2020; 41:110-118. [PMID: 31515527 PMCID: PMC7468359 DOI: 10.1038/s41401-019-0290-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
In addition to the well-known cardiotonic effects, cardiac glycosides (CGs) produce potent anticancer effects with various molecular mechanisms. We previously show that ouabain induces autophagic cell death in human lung cancer cells by regulating AMPK-mediated mTOR and Src-mediated ERK1/2 signaling pathways. However, whether and how AMPK and Src signaling interacts in ouabain-treated cancer cells remains unclear. Given the pivotal role of AMPK in metabolism, whether ouabain affects cancer cell metabolism remains elusive. In this study we showed that treatment with ouabain (25 nM) caused simultaneous activation of AMPK and Src signaling pathways in human lung cancer A549 cells and human breast cancer MCF7 cells. Cotreatment with AMPK inhibitor compound C or siRNA greatly abrogates ouabain-induced Src activation, whereas cotreatment with Src inhibitor PP2 has little effect on ouabain-induced AMPK activity, suggesting that AMPK served as an upstream regulator of the Src signaling pathway. On the other hand, ouabain treatment greatly depletes ATP production in A549 and MCF7 cells, and supplement of ATP (100 μM) blocked ouabain-induced AMPK activation. We further demonstrated that ouabain greatly inhibited the mitochondrial oxidative phosphorylation (OXPHOS) in the cancer cells, and exerted differential metabolic effects on glycolysis depending on cancer cell type. Taken together, this study reveals that the altered cancer cell metabolism caused by ouabain may contribute to AMPK activation, as well as its cytotoxicity towards cancer cells.
Collapse
|
11
|
Sabbatinelli J, Prattichizzo F, Olivieri F, Procopio AD, Rippo MR, Giuliani A. Where Metabolism Meets Senescence: Focus on Endothelial Cells. Front Physiol 2019; 10:1523. [PMID: 31920721 PMCID: PMC6930181 DOI: 10.3389/fphys.2019.01523] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the decline in their proliferative potential, senescent cells display a high metabolic activity. Senescent cells have been shown to acquire a more glycolytic state even in presence of high oxygen levels, in a way similar to cancer cells. The diversion of pyruvate, the final product of glycolysis, away from oxidative phosphorylation results in an altered bioenergetic state and may occur as a response to the enhanced oxidative stress caused by the accumulation of dysfunctional mitochondria. This metabolic shift leads to increased AMP/ATP and ADP/ATP ratios, to the subsequent AMPK activation, and ultimately to p53-mediated growth arrest. Mounting evidences suggest that metabolic reprogramming is critical to direct considerable amounts of energy toward specific activities related to the senescent state, including the senescence-associated secretory phenotype (SASP) and the modulation of immune responses within senescent cell tissue microenvironment. Interestingly, despite the relative abundance of oxygen in the vascular compartment, healthy endothelial cells (ECs) produce most of their ATP content from the anaerobic conversion of glucose to lactate. Their high glycolytic rate further increases during senescence. Alterations in EC metabolism have been identified in age-related diseases (ARDs) associated with a dysfunctional vasculature, including atherosclerosis, type 2 diabetes and cardiovascular diseases. In particular, higher production of reactive oxygen species deriving from a variety of enzymatic sources, including uncoupled endothelial nitric oxide synthase and the electron transport chain, causes DNA damage and activates the NAD+-consuming enzymes polyADP-ribose polymerase 1 (PARP1). These non-physiological mechanisms drive the impairment of the glycolytic flux and the diversion of glycolytic intermediates into many pathological pathways. Of note, accumulation of senescent ECs has been reported in the context of ARDs. Through their pro-oxidant, pro-inflammatory, vasoconstrictor, and prothrombotic activities, they negatively impact on vascular physiology, promoting both the onset and development of ARDs. Here, we review the current knowledge on the cellular senescence-related metabolic changes and their contribution to the mechanisms underlying the pathogenesis of ARDs, with a particular focus on ECs. Moreover, current and potential interventions aimed at modulating EC metabolism, in order to prevent or delay ARD onset, will be discussed.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Son M, Oh S, Lee HS, Chung DM, Jang JT, Jeon YJ, Choi CH, Park KY, Son KH, Byun K. Ecklonia Cava Extract Attenuates Endothelial Cell Dysfunction by Modulation of Inflammation and Brown Adipocyte Function in Perivascular Fat Tissue. Nutrients 2019; 11:E2795. [PMID: 31731817 PMCID: PMC6893767 DOI: 10.3390/nu11112795] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
It is well known that perivascular fat tissue (PVAT) dysfunction can induce endothelial cell (EC) dysfunction, an event which is related with various cardiovascular diseases. In this study, we evaluated whether Ecklonia cava extract (ECE) and pyrogallol-phloroglucinol-6,6-bieckol (PPB), one component of ECE, could attenuate EC dysfunction by modulating diet-induced PVAT dysfunction mediated by inflammation and ER stress. A high fat diet (HFD) led to an increase in the number and size of white adipocytes in PVAT; PPB and ECE attenuated those increases. Additionally, ECE and PPB attenuated: (i) an increase in the number of M1 macrophages and the expression level of monocyte chemoattractant protein-1 (MCP-1), both of which are related to increases in macrophage infiltration and induction of inflammation in PVAT, and (ii) the expression of pro-inflammatory cytokines (e.g., tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, chemerin) in PVAT which led to vasoconstriction. Furthermore, ECE and PPB: (i) enhanced the expression of adiponectin and IL-10 which had anti-inflammatory and vasodilator effects, (ii) decreased HFD-induced endoplasmic reticulum (ER) stress and (iii) attenuated the ER stress mediated reduction in sirtuin type 1 (Sirt1) and peroxisome proliferator-activated receptor γ (PPARγ) expression. Protective effects against decreased Sirt1 and PPARγ expression led to the restoration of uncoupling protein -1 (UCP-1) expression and the browning process in PVAT. PPB or ECE attenuated endothelial dysfunction by enhancing the pAMPK-PI3K-peNOS pathway and reducing the expression of endothelin-1 (ET-1). In conclusion, PPB and ECE attenuated PVAT dysfunction and subsequent endothelial dysfunction by: (i) decreasing inflammation and ER stress, and (ii) modulating brown adipocyte function.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| | - Hye Sun Lee
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| | - Dong-Min Chung
- Shinwoo cooperation. Ltd. 991, Worasan-ro, Munsan-eup, Jinju, Gyeongsangnam-do 52839, Korea;
| | - Ji Tae Jang
- Aqua Green Technology Co., Ltd., Smart Bldg., Jeju Science Park, Cheomdan-ro, Jeju 63309, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea; (C.H.C.); (K.Y.P.)
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea; (C.H.C.); (K.Y.P.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea; (C.H.C.); (K.Y.P.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (H.S.L.)
| |
Collapse
|
13
|
Villar-Briones A, Aird SD. Organic and Peptidyl Constituents of Snake Venoms: The Picture Is Vastly More Complex Than We Imagined. Toxins (Basel) 2018; 10:E392. [PMID: 30261630 PMCID: PMC6215107 DOI: 10.3390/toxins10100392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
Small metabolites and peptides in 17 snake venoms (Elapidae, Viperinae, and Crotalinae), were quantified using liquid chromatography-mass spectrometry. Each venom contains >900 metabolites and peptides. Many small organic compounds are present at levels that are probably significant in prey envenomation, given that their known pharmacologies are consistent with snake envenomation strategies. Metabolites included purine nucleosides and their bases, neurotransmitters, neuromodulators, guanidino compounds, carboxylic acids, amines, mono- and disaccharides, and amino acids. Peptides of 2⁻15 amino acids are also present in significant quantities, particularly in crotaline and viperine venoms. Some constituents are specific to individual taxa, while others are broadly distributed. Some of the latter appear to support high anabolic activity in the gland, rather than having toxic functions. Overall, the most abundant organic metabolite was citric acid, owing to its predominance in viperine and crotaline venoms, where it chelates divalent cations to prevent venom degradation by venom metalloproteases and damage to glandular tissue by phospholipases. However, in terms of their concentrations in individual venoms, adenosine, adenine, were most abundant, owing to their high titers in Dendroaspis polylepis venom, although hypoxanthine, guanosine, inosine, and guanine all numbered among the 50 most abundant organic constituents. A purine not previously reported in venoms, ethyl adenosine carboxylate, was discovered in D. polylepis venom, where it probably contributes to the profound hypotension caused by this venom. Acetylcholine was present in significant quantities only in this highly excitotoxic venom, while 4-guanidinobutyric acid and 5-guanidino-2-oxopentanoic acid were present in all venoms.
Collapse
Affiliation(s)
- Alejandro Villar-Briones
- Division of Research Support, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| | - Steven D Aird
- Division of Faculty Affairs and Ecology and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| |
Collapse
|
14
|
Identification of protein phosphatase involvement in the AT 2 receptor-induced activation of endothelial nitric oxide synthase. Clin Sci (Lond) 2018. [PMID: 29540539 DOI: 10.1042/cs20171598] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Angiotensin II type 2 receptor (AT2R) promotes vasodilation by nitric oxide (NO) release from endothelial cells. However, the mechanisms underlying the AT2R-induced stimulation of endothelial NO synthase (eNOS) is still not completely understood. Therefore, we investigated whether in addition to the known AT2R-mediated phosphorylation of eNOS at Ser1177, activation of phosphatases and dephosphorylation of eNOS at Tyr657 and Thr495 are also involved. Human aortic endothelial cells (HAEC) were stimulated with the AT2R-agonist Compound 21 (C21) (1 µM) in the presence or absence of either PD123319 (10 µM; AT2R antagonist), l-NG-Nitroarginine methyl ester (l-NAME) (10 µM; eNOS inhibitor), MK-2206 (100 nM; protein kinase B (Akt) inhibitor) sodium fluoride (NaF) (1 nM; serine/threonine phosphatase inhibitor) or sodium orthovanadate (Na3VO4) (10 nM; tyrosine phosphatase inhibitor). NO release was estimated by quantifying 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. The phosphorylation status of activating (eNOS-Ser1177) or inhibitory eNOS residues (eNOS-Tyr657, eNOS-Thr495) was determined by Western blotting. Phosphorylation of Akt at Ser473 was measured to estimate Akt activity. AT2R stimulation significantly increased NO release from HAEC, which was blocked by PD123319, l-NAME and both phosphatase inhibitors. Intracellular calcium transients were not changed by C21. AT2R stimulation resulted in phosphorylation of eNOS-Ser1177 and dephosphorylation of eNOS-Tyr657 and eNOS-Thr495 Phosphorylation at eNOS-Ser1177 was prevented by inhibition of Akt with MK-2206. From these data, we conclude that AT2R stimulation in human endothelial cells increases eNOS activity through phosphorylation of activating eNOS residues (eNOS-Ser1177) by Akt, and through dephosphorylation of inactivating eNOS residues (eNOS-Tyr657, eNOS-Thr495) by serine/threonine and tyrosine phosphatases, thus increasing NO release.
Collapse
|
15
|
Feng J, Chen HW, Pi LJ, Wang J, Zhan DQ. Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway. Oncotarget 2018; 8:10161-10170. [PMID: 28053285 PMCID: PMC5354649 DOI: 10.18632/oncotarget.14328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
The study aimed to investigate the protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats (SHRs) through the Cys-C/Wnt signaling pathway. Thirty SHRs were randomly divided into cardiac hypertrophy, low- and high-dose tanshinone IIA groups. Ten Wistar-Kyoto rats were selected as control group. The systolic blood pressure (SBP), heart weight (HW), left ventricular weight (LVW) and body weight (BW) of all rats were recorded. HE staining and qRT-PCR were applied to observe the morphology of myocardial tissue and mRNA expressions of COL1A1 and COL3A1. ELISA and Western blotting were used to measure the serum asymmetric dimethylarginine (ADMA), nitric oxide (NO) and cardiac troponin I (cTnI) levels, and the expressions of the Cys-C/Wnt signaling pathway-related proteins, eNOS and Nox4. Compared with the cardiac hypertrophy group, the SBP, HW/BW, LVW/BW, swelling degree of myocardial cells, COL1A1 and COL3A1 mRNA expressions, serum cTnI and ADMA levels, and the Cys-C/Wnt signaling pathway-related proteins and Nox4 expressions in the low- and high-dose tanshinone IIA groups were decreased, but the endothelial NO synthase (eNOS), phosphorylated eNOS (Ser1177) and NO expressions were increased. No significant difference was found between the low- and high-dose tanshinone IIA groups. Our study indicated a protective effect of tanshinone IIA against cardiac hypertrophy in SHRs through inhibiting the Cys-C/Wnt signaling pathway.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Hua-Wen Chen
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Li-Juan Pi
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Jin Wang
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Da-Qian Zhan
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
16
|
l -Carnitine ameliorates the oxidative stress response to angiotensin II by modulating NADPH oxidase through a reduction in protein kinase c activity and NF-κB translocation to the nucleus. Food Chem 2017; 228:356-366. [DOI: 10.1016/j.foodchem.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 10/20/2016] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
|
17
|
Murad HAS. L-Carnitine, but not coenzyme Q10, enhances the anti-osteoporotic effect of atorvastatin in ovariectomized rats. J Zhejiang Univ Sci B 2016; 17:43-53. [PMID: 26739525 DOI: 10.1631/jzus.b1500065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Statins' therapy in osteoporosis can aggravate muscle damage. This study was designed to assess which agent, L-carnitine or coenzyme Q10, could enhance the anti-osteoporotic effect of atorvastatin while antagonizing myopathy in ovariectomized rats. METHODS Forty-eight female Sprague Dawley rats were used; forty rats were ovariectomized while eight were sham-operated. Eight weeks post-ovariectomy, rats were divided into ovariectomized-untreated group and four ovariectomized-treated groups (n=8) which received by gavage (mg/(kg∙d), for 8 weeks) 17β-estradiol (0.1), atorvastatin (50), atorvastatin (50)+L-carnitine (100), or atorvastatin (50)+coenzyme Q10 (20). At the end of therapy, bone mineral density (BMD), bone mineral content (BMC), and serum levels of bone metabolic markers (BMMs) and creatine kinase (CK) were measured. Femurs were used for studying the breaking strength and histopathological changes. RESULTS Treatment with atorvastatin+L-carnitine restored BMD, BMC, and bone strength to near normal levels. Estrogen therapy restored BMD and BMC to near normal levels, but failed to increase bone strength. Although atorvastatin and atorvastatin+coenzyme Q10 improved BMD, BMC, and bone strength, they failed to restore levels to normal. All treatments decreased BMMs and improved histopathological changes maximally with atorvastatin+L-carnitine which restored levels to near normal. Atorvastatin aggravated the ovariectomy-induced increase in CK level while estrogen, atorvastatin+L-carnitine, and atorvastatin+coenzyme Q10 decreased its level mainly with atorvastatin+L-carnitine which restored the level to near normal. CONCLUSIONS Co-administration of L-carnitine, but not coenzyme Q10, enhances the anti-osteoporotic effect of atorvastatin while antagonizing myopathy in ovariectomized rats. This could be valuable in treatment of osteoporotic patients. However, further confirmatory studies are needed.
Collapse
Affiliation(s)
- Hussam A S Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| |
Collapse
|
18
|
Xie F, Zhang SH, Cheng J, Wang HW, Fei X, Jiao ZY, Tang J, Luo YK. Evaluation of hepatic vascular endothelial injury during liver storage by molecular detection and targeted contrast-enhanced ultrasound imaging. IUBMB Life 2015; 68:51-7. [PMID: 26662566 DOI: 10.1002/iub.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022]
Abstract
We hypothesized that lack of the high-energy phosphates during liver storage may potentially cause persistent injury to the vascular endothelium. Biopsies were obtained from livers obtained from beating heart human donors, stored either in the standard storage solution, that is, University of Wisconsin solution (UWS) or Celsior, and examined for various markers related to progressive endothelial injury. The expression of P2Y1 receptor, the major signal transduction machinery for adenosine triphosphate/adenosine diphosphate, decreased in hepatic vascular endothelial cells over time. Despite unaltered endothelial nitric oxide synthase (eNOS) levels, serine1177-phosphorylated eNOS, the active form of eNOS, progressively decreased with time. The production of nitric oxide enzyme decreased with time when liver tissues were examined in vitro. This also coincided with decreased interaction of eNOS with actin nucleating proteins like myristoylated alanine-rich C kinase substrate and Rac1, which plays a role in modulating the cytoskeleton and helps position eNOS in a favorable cytosolic position for active enzymatic activity. Conversely, the interaction of eNOS with caveolin1 was significantly increased 6 H after ex vivo storage. Finally, we demonstrated by targeted contrast-enhanced ultrasound that membrane-bound vascular cell adhesion molecule-1 in the hepatic vascular endothelial cell increased after 6 H of ex vivo storage. Overall, the results of this study provide evidence of a progressive hepatic vascular endothelial injury during the ex vivo storage. This may be a causative factor for ischemic cholangiopathy and delayed graft function post liver transplantation. © 2015 IUBMB Life, 68(1):51-57, 2015.
Collapse
Affiliation(s)
- Fang Xie
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China.,Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Shu-Hua Zhang
- Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jia Cheng
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hong-Wei Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiang Fei
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zi-Yu Jiao
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yu-Kun Luo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
García-Prieto CF, Gil-Ortega M, Aránguez I, Ortiz-Besoain M, Somoza B, Fernández-Alfonso MS. Vascular AMPK as an attractive target in the treatment of vascular complications of obesity. Vascul Pharmacol 2015; 67-69:10-20. [PMID: 25869500 DOI: 10.1016/j.vph.2015.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/23/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
The key for the survival of all organisms is the regulation and control of energy metabolism. Thus, several strategies have evolved in each tissue in order to balance nutrient supply with energy demand. Adenosine monophosphate-activated protein kinase (AMPK) is now recognized as a key participant in energy metabolism. It ensures an appropriate energetic supply by promoting energy conserving pathways in detriment of anabolic processes not essential for cell survival. Vascular AMPK plays a critical role in the regulation of blood flow and vascular tone through several mechanisms, including vasodilation by stimulating nitric oxide release in endothelial cells. Since obesity leads to endothelial damage and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. In the present review we focus on the role of vascular AMPK in both endothelial and smooth muscle cells, paying special attention to its dysregulation in obesity- and high-fat diet-related complications, as well as to the mechanisms and benefits of vascular AMPK activation.
Collapse
Affiliation(s)
- C F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - I Aránguez
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - M Ortiz-Besoain
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio N3, Universidad Católica del Norte de Chile, Angamos, 0610 Antofagasta, Chile
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Li J, Zhang K, Wu J, Liao Y, Yang P, Huang N. Co-culture of endothelial cells and patterned smooth muscle cells on titanium: Construction with high density of endothelial cells and low density of smooth muscle cells. Biochem Biophys Res Commun 2015; 456:555-61. [DOI: 10.1016/j.bbrc.2014.10.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022]
|
21
|
Dietary L-Carnitine Supplement Counteracts Pulmonary Hypertensive Response in Broiler Chickens Fed Reduced-Protein Diets and Subjected to Cool Condition and Hypobaric Hypoxia. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
García-Prieto CF, Hernández-Nuño F, Rio DD, Ruiz-Hurtado G, Aránguez I, Ruiz-Gayo M, Somoza B, Fernández-Alfonso MS. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway. Mol Nutr Food Res 2014; 59:520-32. [PMID: 25421217 DOI: 10.1002/mnfr.201400539] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/08/2014] [Accepted: 11/13/2014] [Indexed: 11/11/2022]
Abstract
SCOPE Activation of endothelial adenosine monophosphate-activated protein kinase (AMPK) contributes to increase nitric oxide (NO) availability. The aim of this study was to assess if high-fat diet (HFD)-induced endothelial dysfunction is linked to AMPK deregulation. METHODS AND RESULTS Twelve-week-old Sprague Dawley male rats were assigned either to control (10 kcal % from fat) or to HFD (45 kcal % from fat) for 8 wk. HFD rats segregated in obesity-prone (OP) or obesity-resistant (OR) rats according to body weight. HFD triggered an impaired glucose management together with impaired endothelium-dependent relaxation, reduced endothelial AMPK activity and lower NO availability in aortic rings of OP and OR cohorts. Relaxation evoked by AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) was reduced in both OP and OR rings, which exhibited lower p-AMPKα-Thr(172) /AMPKα ratios that negatively correlated with plasma non-esterified fatty acids (NEFA) and triglycerides (TG). Inhibition of PI3K (wortmannin, 10(-7) M) or Akt (triciribine, 10(-5) M) reduced relaxation to AICAR only in the control group (p < 0.001). Akt (p-Akt-Ser(473) ) and eNOS phosphorylation (p-eNOS-Ser(1177) ) were significantly reduced in OP and OR (p < 0.01). CONCLUSION Endothelial dysfunction caused by HFD is related to a dysfunctional endothelial AMPK-PI3K-Akt-eNOS pathway correlating with the increase of plasma NEFA, TG, and an impaired glucose management.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
García-Prieto CF, Pulido-Olmo H, Ruiz-Hurtado G, Gil-Ortega M, Aranguez I, Rubio MA, Ruiz-Gayo M, Somoza B, Fernández-Alfonso MS. Mild caloric restriction reduces blood pressure and activates endothelial AMPK-PI3K-Akt-eNOS pathway in obese Zucker rats. Vascul Pharmacol 2014; 65-66:3-12. [PMID: 25530153 DOI: 10.1016/j.vph.2014.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/08/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Genetic obesity models exhibit endothelial dysfunction associated to adenosine monophosphate-activated protein kinase (AMPK) dysregulation. This study aims to assess if mild short-term caloric restriction (CR) restores endothelial AMPK activity leading to an improvement in endothelial function. Twelve-week old Zucker lean and obese (fa/fa) male rats had access to standard chow either ad libitum (AL, n=8) or 80% of AL (CR, n=8) for two weeks. Systolic blood pressure was significantly higher in fa/fa AL rats versus lean AL animals, but was normalized by CR. Endothelium-dependent relaxation to acetylcholine (ACh, 10(-9) to 10(-4) M) was reduced in fa/fa AL compared to control lean AL rats (p<0.001), and restored by CR. The AMPK activator AICAR (10(-5) to 8·10(-3) M) elicited a lower relaxation in fa/fa AL rings that was normalized by CR (p<0.001). Inhibition of PI3K (wortmannin, 10(-7) M), Akt (triciribine, 10(-5) M), or eNOS (L-NAME, 10(-4) M) markedly reduced AICAR-induced relaxation in lean AL, but not in fa/fa AL rats. These inhibitions were restored by CR in Zucker fa/fa rings. These data show that mild short-term CR improves endothelial function and lowers blood pressure in obesity due to the activation of the AMPK-PI3K-Akt-eNOS pathway.
Collapse
Affiliation(s)
- C F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - H Pulido-Olmo
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Unidad de Hipertensión, imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - G Ruiz-Hurtado
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Unidad de Hipertensión, imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - I Aranguez
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - M A Rubio
- Servicio de Endocrinología y Nutrición, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - M Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
24
|
Liu H, Wang L, Ma H, Guo R, Kang R, Han J, Dong Z. Coumestrol inhibits carotid sinus baroreceptor activity by cAMP/PKA dependent nitric oxide release in anesthetized male rats. Biochem Pharmacol 2014; 93:42-8. [PMID: 25449602 DOI: 10.1016/j.bcp.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/16/2022]
Abstract
Phytoestrogens could offer multiple beneficial effects on the cardiovascular system. Here, we have examined the effects of coumestrol (CMT) on carotid baroreceptors activity (CBA) and the possible mechanisms in male rats. The functional parameters of carotid baroreceptors were measured by recording sinus nerve afferent discharge in anesthetized male rats with perfused isolated carotid sinus. The levels of protein expression were determined by using ELISA and Western blotting. CMT (1 to 100μmolL(-1)) inhibited CBA, which shifted the functional curve of the carotid baroreceptor to the right and downward, with a marked decrease in the peak slope and the peak integral value of carotid sinus nerve discharge in a concentration dependent manner. These effects were not blocked by a specific estrogen receptor antagonist ICI 182,780, but were completely abolished by nitric oxide (NO) synthase inhibitor l-NAME (N(G)-nitro-l-arginine methyl ester). Furthermore, a NO donor, SIN-1(3-morpholion-sydnon-imine), could potentiate these inhibitory effects of CMT. CMT stimulated the phosphorylation of Ser(1176)-eNOS (endothelial nitric oxide synthase) in a dose-dependent manner in carotid bifurcation tissue over a perfusion period of 15min. The rapid activation of eNOS by CMT was blocked by a highly selective PKA (protein kinase A) inhibitor H89. In addition, inhibition of PI3K (phosphatidylinositol-3-kinase) and ERK (extracellular signal-regulated kinase) pathways had no effect on eNOS activation by CMT. CMT inhibited CBA via eNOS activation and NO synthesis. These effects were mediated by the cAMP/PKA pathway and were unrelated to the estrogenic effect.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lixuan Wang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Ma
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Rong Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Rongtian Kang
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianmin Han
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenming Dong
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
25
|
Ma S, Ma CCH. Recent developments in the effects of nitric oxide-donating statins on cardiovascular disease through regulation of tetrahydrobiopterin and nitric oxide. Vascul Pharmacol 2014; 63:63-70. [PMID: 25139660 DOI: 10.1016/j.vph.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Since the discovery of the importance of nitric oxide (NO) to the human body three decades ago, numerous laboratory and clinical studies have been done to explore its potential therapeutic actions on many organs. In the cardiovascular system, NO works as a volatile signaling molecule regulating the vascular permeability and vascular tone, preventing thrombosis and inflammation, as well as inhibiting the smooth muscle hyperplasia. Thus, NO is important in the prevention and treatment of cardiovascular disease. NO is synthesized by NO synthase (NOS) with tetrahydrobiopterin (BH4) as the crucial cofactor. Many studies have been done to form nitric oxide donors so as to deliver NO directly to the vessel walls. In addition, NO moieties have been incorporated into existing therapeutic agents to enhance the NO bioavailability, including statins. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA), the rate-limiting enzyme of the mevalonate pathway. By inhibiting this pathway, statins lower blood cholesterol and exert their pleiotropic effects through activity in reaction cascades, such as Rho/ROCK and Rac 1/NADPH oxidase pathways. Statins have also been observed to implement their non-lipid effects by promoting BH4 synthesis with increase of NO bioavailability. Furthermore, NO-donating statins in laboratory studies have demonstrated to produce better therapeutic effects than their parent's drugs. They offer better anti-inflammatory, anti-proliferative and antithrombotic actions on cardiovascular system. They also cause better revascularization in peripheral ischemia and produce greater enhancement in limb reperfusion and salvage. In addition, it has been shown that NO-donating statin caused less myotoxicity, the most common side effect related to treatment with statins. The initial studies have demonstrated the superior therapeutic effects of NO-donating statins while producing fewer side effects.
Collapse
Affiliation(s)
- Sze Ma
- Hong Kong Baptist Hospital, Hong Kong; National University Ireland, Ireland; Royal College of Physicians of Ireland, Ireland
| | - Christopher Cheng-Hwa Ma
- NHS Dumfries & Galloway, GMC 7411692, United Kingdom; King's College London School of Medicine, United Kingdom.
| |
Collapse
|
26
|
Sue YM, Chou HC, Chang CC, Yang NJ, Chou Y, Juan SH. L-carnitine protects against carboplatin-mediated renal injury: AMPK- and PPARα-dependent inactivation of NFAT3. PLoS One 2014; 9:e104079. [PMID: 25090113 PMCID: PMC4121315 DOI: 10.1371/journal.pone.0104079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/06/2014] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that carboplatin induces inflammation and apoptosis in renal tubular cells (RTCs) through the activation of the nuclear factor of activated T cells-3 (NFAT3) protein by reactive oxygen species (ROS), and that the ROS-mediated activation of NFAT3 is prevented by N-acetyl cysteine and heme oxygenase-1 treatment. In the current study, we investigated the underlying molecular mechanisms of the protective effect of L-carnitine on carboplatin-mediated renal injury. Balb/c mice and RTCs were used as model systems. Carboplatin-induced apoptosis in RTCs was examined using terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling. We evaluated the effects of the overexpression of the peroxisome-proliferator-activated receptor alpha (PPARα) protein, the knockdown of PPARα gene, and the blockade of AMPK activation and PPARα to investigate the underlying mechanisms of the protective effect of L-carnitine on carboplatin-mediated renal injury. Carboplatin reduced the nuclear translocation, phosphorylation, and peroxisome proliferator responsive element transactivational activity of PPARα. These carboplatin-mediated effects were prevented by L-carnitine through a mechanism dependent on AMPK phosphorylation and subsequent PPARα activation. The activation of PPARα induced cyclooxygenase 2 (COX-2) and prostacyclin (PGI2) synthase expression that formed a positive feedback loop to further activate PPARα. The coimmunoprecipitation of the nuclear factor (NF) κB proteins increased following the induction of PPARα by L-carnitine, which reduced NFκB transactivational activity and cytokine expression. The in vivo study showed that the inactivation of AMPK suppressed the protective effect of L-carnitine in carboplatin-treated mice, indicating that AMPK phosphorylation is required for PPARα activation in the L-carnitine-mediated protection of RTC apoptosis caused by carboplatin. The results of our study provide molecular evidence that L-carnitine prevents carboplatin-mediated apoptosis through AMPK-mediated PPARα activation.
Collapse
Affiliation(s)
- Yuh-Mou Sue
- Department of Nephrology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nian-Jie Yang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying Chou
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|