1
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
You F, Nicco C, Harakawa Y, Yoshikawa T, Inufusa H. The Potential of Twendee X ® as a Safe Antioxidant Treatment for Systemic Sclerosis. Int J Mol Sci 2024; 25:3064. [PMID: 38474309 DOI: 10.3390/ijms25053064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by systemic skin hardening, which combines Raynaud's phenomenon and other vascular disorders, skin and internal organ fibrosis, immune disorders, and a variety of other abnormalities. Symptoms vary widely among individuals, and personalized treatment is sought for each patient. Since there is no fundamental cure for SSc, it is designated as an intractable disease with patients receiving government subsidies for medical expenses in Japan. Oxidative stress (OS) has been reported to play an important role in the cause and symptoms of SSc. HOCl-induced SSc mouse models are known to exhibit skin and visceral fibrosis, vascular damage, and autoimmune-like symptoms observed in human SSc. The antioxidant combination Twendee X® (TwX) is a dietary supplement consisting of vitamins, amino acids, and CoQ10. TwX has been proven to prevent dementia in humans with mild cognitive impairment and significantly improve cognitive impairment in an Alzheimer's disease mouse model by regulating OS through a strong antioxidant capacity that cannot be achieved with a single antioxidant ingredient. We evaluated the effectiveness of TwX on various symptoms of HOCl-induced SSc mice. TwX-treated HOCl-induced SSc mice showed significantly reduced lung and skin fibrosis compared to untreated HOCl-induced SSc mice. TwX also significantly reduced highly oxidized protein products (AOPP) in serum and suppressed Col-1 gene expression and activation of B cells involved in autoimmunity. These findings suggest that TwX has the potential to be a new antioxidant treatment for SSc without side effects.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| | - Carole Nicco
- Université Paris Cité, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
- School of Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
3
|
Valli E, Dalotto-Moreno T, Sterle HA, Méndez-Huergo SP, Paulazo MA, García SI, Pirola CJ, Klecha AJ, Rabinovich GA, Cremaschi GA. Hypothyroidism-associated immunosuppression involves induction of galectin-1-producing regulatory T cells. FASEB J 2023; 37:e22865. [PMID: 36934391 DOI: 10.1096/fj.202200884r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/20/2023]
Abstract
Hypothyroidism exerts deleterious effects on immunity, but the precise role of the hypothalamic-pituitary-thyroid (HPT) axis in immunoregulatory and tolerogenic programs is barely understood. Here, we investigated the mechanisms underlying hypothyroid-related immunosuppression by examining the regulatory role of components of the HPT axis. We first analyzed lymphocyte activity in mice overexpressing the TRH gene (Tg-Trh). T cells from Tg-Trh showed increased proliferation than wild-type (WT) euthyroid mice in response to polyclonal activation. The release of Th1 pro-inflammatory cytokines was also increased in Tg-Trh and TSH levels correlated with T-cell proliferation. To gain further mechanistic insights into hypothyroidism-related immunosuppression, we evaluated T-cell subpopulations in lymphoid tissues of hypothyroid and control mice. No differences were observed in CD3/CD19 or CD4/CD8 ratios between these strains. However, the frequency of regulatory T cells (Tregs) was significantly increased in hypothyroid mice, and not in Tg-Trh mice. Accordingly, in vitro Tregs differentiation was more pronounced in naïve T cells isolated from hypothyroid mice. Since Tregs overexpress galectin-1 (Gal-1) and mice lacking this lectin (Lgals1-/- ) show reduced Treg function, we investigated the involvement of this immunoregulatory lectin in the control of Tregs in settings of hypothyroidism. Increased T lymphocyte reactivity and reduced frequency of Tregs were found in hypothyroid Lgals1-/- mice when compared to hypothyroid WT animals. This effect was rescued by the addition of recombinant Gal-1. Finally, increased expression of Gal-1 was found in Tregs purified from hypothyroid WT mice compared with their euthyroid counterpart. Thus, a substantial increase in the frequency and activity of Gal-1-expressing Tregs underlies immunosuppression associated with hypothyroid conditions, with critical implications in immunopathology, metabolic disorders, and cancer.
Collapse
Affiliation(s)
- Eduardo Valli
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED), Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Helena A Sterle
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED), Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago P Méndez-Huergo
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María A Paulazo
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED), Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia I García
- Facultad de Medicina, Instituto de investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Cardiología Molecular., Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J Pirola
- Biología de Sistemas de Enfermedades Complejas, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia J Klecha
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED), Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED), Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Asano Y. Insights Into the Preclinical Models of SSc. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Doridot L, Jeljeli M, Chêne C, Batteux F. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis. Redox Biol 2019; 25:101122. [PMID: 30737171 PMCID: PMC6859527 DOI: 10.1016/j.redox.2019.101122] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis is an autoimmune disorder characterized by inflammation and a progressive fibrosis affecting the skin and visceral organs. Over the last two decades, it became clear that oxidative stress plays a key role in its pathogenesis. In this review, we highlighted the role of ROS in the various pathological components of systemic sclerosis, namely the inflammatory, the autoimmune and the fibrotic processes. We also discussed how these pathological processes can induce ROS overproduction, thus maintaining a vicious circle. Finally, we summarized the therapeutic approaches targeting oxidative stress tested in systemic sclerosis, in cells, animal models and patients.
Collapse
Affiliation(s)
- Ludivine Doridot
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Mohamed Jeljeli
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; Department of Immunology, Cochin Teaching Hospital, AP-HP, 27, rue du faubourg Saint-Jacques, F75014, Paris, France
| | | | - Frédéric Batteux
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; Department of Immunology, Cochin Teaching Hospital, AP-HP, 27, rue du faubourg Saint-Jacques, F75014, Paris, France
| |
Collapse
|
6
|
Maria ATJ, Jorgensen C, Le Quellec A, Noël D, Guilpain P. Reply. Arthritis Rheumatol 2018; 68:2348-50. [PMID: 27214595 DOI: 10.1002/art.39756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | - Danièle Noël
- INSERM U1183, Saint-Eloi Hospital and Montpellier University Medical School, Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, Saint-Eloi Hospital and Montpellier University Medical School, Montpellier, France
| |
Collapse
|
7
|
Vona R, Giovannetti A, Gambardella L, Malorni W, Pietraforte D, Straface E. Oxidative stress in the pathogenesis of systemic scleroderma: An overview. J Cell Mol Med 2018; 22:3308-3314. [PMID: 29664231 PMCID: PMC6010858 DOI: 10.1111/jcmm.13630] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/11/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare disorder of the connective tissue characterized by fibrosis of the skin, skeletal muscles and visceral organs. Additional manifestations include activation of the immune system and vascular injury. SSc causes disability and death as the result of end‐stage organ failure. Two clinical subsets of the SSc are accepted: limited cutaneous SSc (lc‐SSc) and diffuse cutaneous SSc (dc‐SSc). At present, the aetiology and pathogenesis of SSc remain obscure, and consequently, disease outcome is unpredictable. Numerous studies suggest that reactive oxidizing species (ROS) play an important role in the pathogenesis of scleroderma. Over the years, several reports have supported this hypothesis for both lc‐SSc and dc‐SSc, although the specific role of oxidative stress in the pathogenesis of vascular injury and fibrosis remains to be clarified. The aim of the present review was to report and comment the recent findings regarding the involvement and role of oxidative stress in SSc pathogenesis. Biomarkers proving the link between ROS and the main pathological features of SSc have been summarized.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Biomarkers Unit, Rome, Italy
| | | | | | - Walter Malorni
- Center for Gender-Specific Medicine, Biomarkers Unit, Rome, Italy
| | - Donatella Pietraforte
- Center for Gender-Specific Medicine, Biomarkers Unit, Rome, Italy.,Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
8
|
Bitto A, Bagnato GL, Pizzino G, Roberts WN, Irrera N, Minutoli L, Russo G, Squadrito F, Saitta A, Bagnato GF, Altavilla D. Simvastatin prevents vascular complications in the chronic reactive oxygen species murine model of systemic sclerosis. Free Radic Res 2016; 50:514-22. [PMID: 26846205 DOI: 10.3109/10715762.2016.1149171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims Systemic sclerosis (SSc) is characterized by vasculopathy and organ fibrosis. Although microvascular alterations are very well characterized, structural and functional abnormalities of large vessels are not well defined. Therefore, we evaluated the effect of simvastatin administration on aortic and small renal arteries thickening, and on myofibroblasts differentiation in a murine model of SSc. Methods and results SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl, 100 μl) for 6 weeks. Mice (n = 23) were randomized to receive: HOCl (n = 10); HOCl plus simvastatin (40 mg/kg; n = 8); or vehicle (n = 5). Simvastatin administration started 30 min after HOCl injection, and up to week 6. Aortic and small renal arteries intima-media thickness was evaluated by histological analysis. Immunostaining for α-smooth muscle actin (SMA), vascular endothelial growth factor receptor 2 (VEGFR2), and CD31 in aortic tissues was performed to evaluate myofibroblast differentiation and endothelial markers.In HOCl-treated mice, intima-media thickening with reduced lumen diameter was observed in the aorta and in small renal arteries and simvastatin administration prevented this increase. Aortic and renal myofibroblasts count, as expressed by α-SMA + density, was lower in the group of mice treated with simvastatin compared to HOCl-treated mice. Simvastatin prevented the reduction in VEGFR2 and CD31 expression induced by HOCl. Conclusions The administration of simvastatin regulates collagen deposition in the aortic tissues and in the small renal arteries by modulating myofibroblasts differentiation and vascular markers. Further studies are needed to better address the effect of statins in the macrovascular component of SSc.
Collapse
Affiliation(s)
- Alessandra Bitto
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gian Luca Bagnato
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gabriele Pizzino
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | | | - Natasha Irrera
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Letteria Minutoli
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Giuseppina Russo
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Francesco Squadrito
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Antonino Saitta
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gian Filippo Bagnato
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Domenica Altavilla
- c Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences , University of Messina , Messina , Italy
| |
Collapse
|