1
|
Jia K, Shi P, Zhang L, Yan X, Xu J, Liao K. Trans-cinnamic acid alleviates high-fat diet-induced renal injury via JNK/ERK/P38 MAPK pathway. J Nutr Biochem 2025; 135:109769. [PMID: 39276944 DOI: 10.1016/j.jnutbio.2024.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Obesity-related chronic kidney disease (CKD) poses a significant risk to individuals' health and wellbeing, but the pathological mechanisms and treatment strategies are currently limited. Trans-cinnamic acid (CA) is a key active monomer found in cinnamon bark and is known for its diverse pharmacological activities. However, its effect on obesity-related renal injury remains unknown. In the current study, the in vitro and in vivo experiments were combined to investigate the beneficial effect of CA on renal injury induced by HFD or PA. We found that CA significantly reduced the obesity of zebrafish body and the accumulation of fat in kidney tissues. The histopathological changes and dysfunction induced by HFD were effectively mitigated by CA administration, as evidenced by the detection of Hematoxylin-Eosin straining, NAG activity, creatinine level, and expression of functional-related genes, respectively. Additionally, the in vitro and in vivo findings demonstrated that CA dramatically reduced the oxidative stress, inflammatory, and apoptosis in HFD-induced kidney tissues or PA-treated HEK293T and HK-2 cells. Finally, the results regarding ERK, JNK, and P38 proteins phosphorylation confirmed that CA may alleviate HFD-induced renal injury by inhibiting the phosphorylation of ERK, JNK, and P38 MAPK proteins. This theory was further supported by the results of co-treatment with anisomycin (a JNK activator) or lipopolysaccharide and CA in HEK293T cells. This study proves that CA alleviates the obesity-related CKD probably through inhibition of MAPK signaling pathway.
Collapse
Affiliation(s)
- Kun Jia
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Vashisth C, Kumar Verma N, Afshari M, Bendi A, Raghav N. Cinnamaldehyde as a Potential Cathepsin-B Inhibitor: A Comparative Investigation with some Commercial Anticancer Drugs. Chem Biodivers 2024:e202401985. [PMID: 39530210 DOI: 10.1002/cbdv.202401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Cancer is a leading cause of death worldwide, surpassed only by heart disease. Despite improved diagnosis and treatment, cancer cells still evade normal physiological processes such as apoptosis, metabolism, angiogenesis, cell cycle, and epigenetics. To mitigate the numerous side effects linked to chemotherapy, leveraging natural products emerged as a promising alternative, either alone or in tandem with traditional agents. Cinnamaldehyde, an active ingredient of Cinnamomum cassia's stem bark has emerged as a molecule of research with diverse pharmacological properties. In the present study, we report an in silico potential of cinnamaldehyde (CM) potential as an anticancer agent across thirteen anti-cancer targets in comparison with chlorambucil (CB), docetaxel (DOC), melphalan (MP). Computational tools such as DFT, CHEM3D, molinspiration, vNNADMET, SWISS ADME, admetSAR, galaxyrefine, iGEMDOCK, and DS-Visualizer were employed. Additionally, anti-cathepsin B activity was assessed for cinnamaldehyde and the commercial drugs CB, DOC, MP and the results showed 52.76, 62.41, 72.48 and 65.52 % inhibition respectively which is comparable. The results supported molecular docking using iGEMDOCK. Both in silico and experimental findings substantiate cinnamaldehyde as a promising drug for cancer treatment including metastasis and invasion where cathepsin B involvement is indicated.
Collapse
Affiliation(s)
- Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Nitin Kumar Verma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Anjaneyulu Bendi
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore, 560064, Karnataka, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
3
|
Moon HR, Yun JM. Effect of Siegesbeckia glabrescens Extract on Foam Cell Formation in THP-1 Macrophages. Prev Nutr Food Sci 2024; 29:288-300. [PMID: 39371520 PMCID: PMC11450289 DOI: 10.3746/pnf.2024.29.3.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/08/2024] Open
Abstract
The accumulation of cholesterol-bearing macrophage foam cells in the initial stages of atherosclerosis serves as a characteristic feature of atherosclerotic lesions. The inhibitory effect of Siegesbeckia glabrescens, a species of flowering plant in the Asteraceae family, on foam cell formation in THP-1 macrophages has not yet been elucidated. In this study, we explored the effect of S. glabrescens ethanol extract (SGEE) and hot water extract (SGWE) on foam cell formation via co-treatment with oxidized low density lipoprotein (ox-LDL) and lipopolysaccharide (LPS), mimicking the occurrence of atherosclerosis in vitro, and studied the regulation of its underlying mechanisms. THP-1 cells differentiated by PMA (1 μM) for 48 h were subsequently treated with/without SGWE and SGEE for 48 h. THP-1 macrophages were treated with ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. Treatment with ox-LDL and LPS for 24 h enhanced the lipid accumulation in foam cells compared to in untreated cells, as determined by oil red O staining. In contrast, SGWE and SGEE treatment inhibited lipid accumulation in foam cells. Both extracts significantly upregulated ABCA1, LXRα, and PPARγ expression in ox-LDL- and LPS-treated cells (P<0.05). Moreover, both SGWE and SGEE decreased LOX-1, CD36, and SR-A1 expression. The co-treatment of ox-LDL and LPS increased NF-κB, COX-2, and pro-inflammatory activation and expression compared with untreated cells. However, this increase suppressed NF-κB, COX-2, and pro-inflammatory expression by SGWE and SGEE. The results indicated that both extracts can partially inhibit foam cell formation and contribute to protective effects by suppressing cholesterol accumulation during the onset of atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonam National University, Gwangju 61186, Korea
| |
Collapse
|
4
|
Weng X, Ho CT, Lu M. Biological fate, functional properties, and design strategies for oral delivery systems for cinnamaldehyde. Food Funct 2024; 15:6217-6231. [PMID: 38767618 DOI: 10.1039/d4fo00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.
Collapse
Affiliation(s)
- Xiaolan Weng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Mohammadabadi T, Jain R. Cinnamon: a nutraceutical supplement for the cardiovascular system. Arch Med Sci Atheroscler Dis 2024; 9:e72-e81. [PMID: 38846056 PMCID: PMC11155465 DOI: 10.5114/amsad/184245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 06/09/2024] Open
Abstract
Common therapies for cardiovascular diseases (CVDs) are associated with wide side effects. Thus, herbal medicines have been regarded due to fewer side effects, availability, cultural beliefs, and being cheap. For thousand years, herbal medicine has been used for bacterial infections, colds, coughs, and CVDs. Cinnamon bark contains phenolic compounds such as cinnamaldehyde and cinnamic acid with protective properties which can reduce the risk of cardiovascular diseases, cardiac ischemia and hypertrophy, and myocardial infarction. Furthermore, cinnamon has antioxidant and anti-inflammatory properties and exhibits beneficial effects on the complications of diabetes, obesity, hypercholesterolemia, and hypertension which cause CVDs. Although the protective effects of cinnamon on the heart have been reported in many studies, it needs more clinical studies to prove the pharmaceutical and therapeutic efficacy of cinnamon on risk factors of CVDs.
Collapse
Affiliation(s)
- Taherah Mohammadabadi
- Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University, Khuzestan, Iran
| | | |
Collapse
|
6
|
DESAKI YUYA, KANAMARU YUTAKA, MONTEIRO RENATO, SUZUKI YUSUKE. Fcα Receptor Type I and Its Association with Atherosclerosis Development. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:231-239. [PMID: 38855431 PMCID: PMC11153080 DOI: 10.14789/jmj.jmj23-0003-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2024]
Abstract
Objectives Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and local inflammation, which are regulated by the immune system. The immunological aspects of this disease are unclear. Immunoglobulin A regulates many cell responses through interactions with Fcα receptor type I (FcαRI). Anti-FcαRI antibody inhibits activating receptors by inducing an inhibitory immunoreceptor tyrosine-based activation motif configuration. However, the role of FcαRI in atherosclerosis development is unclear. Here, we investigated the utility of FcαRI targeting to induce inhibitory immunoreceptor tyrosine-based activation motif signaling in atherosclerosis treatment. Materials ApoE-/- transgenic mice expressing the FcαRIR209L/FcRγ chimeric protein (FcαRIR209L/FcRγApoE-/- mice) were generated. We prepared an FcαRIR209L/FcRγ transfectant (I3D) from a mouse macrophage cell line (RAW264.7). Methods Anti-FcαRI or control antibody was used to investigate a high-fat-diet-induced FcαRIR209L/FcRγApoE-/- mouse model of atherosclerosis. The antibody was also used to assess macrophage foam cell formation via Oil Red O staining and mitogen-activated protein kinase signaling via immunoblotting in the FcαRIR209L/FcRγ-expressing RAW264.7 macrophage cell line I3D. Results Targeting of monovalent FcαRI induced inhibitory effects in the FcαRIR209L/FcRγApoE-/- mouse model of atherosclerosis by inhibiting macrophage infiltration. FcαRI targeting using the anti-FcαRI antibody also reduced mitogen-activated protein kinase signaling and foam cell formation, leading to decreased interleukin (IL)-1b and monocyte chemoattractant protein (MCP)-1. Conclusions We demonstrated that targeting monovalent FcαRI suppresses atherosclerosis development. These findings can support the future clinical exploration of FcαRI targeting for atherosclerosis treatment.
Collapse
Affiliation(s)
| | | | | | - YUSUKE SUZUKI
- Corresponding author: Yusuke Suzuki, Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1591 FAX: +81-3-3813-5512 E-mail:
| |
Collapse
|
7
|
Chen L, Yuan J, Li H, Ding Y, Yang X, Yuan Z, Hu Z, Gao Y, Wang X, Lu H, Cai Y, Bai Y, Pan X. Trans-cinnamaldehyde attenuates renal ischemia/reperfusion injury through suppressing inflammation via JNK/p38 MAPK signaling pathway. Int Immunopharmacol 2023; 118:110088. [PMID: 37011503 DOI: 10.1016/j.intimp.2023.110088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Inflammation is the major contributor to the mechanisms of acute kidney injury due to renal ischemia-reperfusion injury (IRI). Trans-cinnamaldehyde (TCA) is a main bioactive component extracted from the bark of cinnamon and has been proved to have good anti-inflammatory properties. The current study was to demonstrate the effect of TCA on renal IRI and explore its specific mechanism. C57BL/6J mice were injected prophylactically intraperitoneally for TCA 3 days, and IRI for 24 h. In parallel, Human Kidney-2 (HK-2) cells were prophylactically treated with TCA, and then exposed to oxygen glucose deprivation/reperfusion (OGD/R) and cobalt chloride (CoCl2). TCA was found to significantly attenuate renal pathological changes and renal dysfunction, and inhibit gene and protein expression of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, TCA significantly suppressed the expression of TNF-α, IL-6, IL-1β, COX-2, iNOS, and MCP-1. Mechanistically, the activation of the JNK/p38 MAPK signaling pathway was inhibited by TCA in renal IRI as well as in OGD/R and CoCl2-stimulated cells. However, following pretreatment with anisomycin before OGD/R treatment, we found that the activation of the JNK/p38 MAPK signaling pathway was significantly enhanced, and concomitant abrogation of the TCA inhibitory effect on the JNK/p38 MAPK signaling pathway, which was followed by a worsening of cell injury that was characterized by an increased number of cell necrosis and an increase in the expression of Kim-1, NGAL as well as proinflammatory factors (IL-6, IL-1β, iNOS). In summary, TCA inhibited renal inflammation via the JNK/p38 MAPK signaling pathway and attenuated renal IRI.
Collapse
|
8
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
9
|
Kim DU, Kweon B, Oh JY, Seo CS, Kim DG, Kim HY, Lee HS, Park SJ, Bae GS. Ojeoksan Ameliorates Cisplatin-Induced Acute Kidney Injury in Mice by Downregulating MAPK and NF-κB Pathways. Int J Mol Sci 2022; 23:ijms232012254. [PMID: 36293111 PMCID: PMC9603434 DOI: 10.3390/ijms232012254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Jin-Young Oh
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Korea
| | - Dong-Gu Kim
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6842
| |
Collapse
|
10
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Das G, Gonçalves S, Basilio Heredia J, Romano A, Jiménez-Ortega LA, Gutiérrez-Grijalva EP, Shin HS, Patra JK. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
12
|
Chen L, Yu D, Ling S, Xu JW. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front Cardiovasc Med 2022; 9:988360. [PMID: 36172573 PMCID: PMC9510640 DOI: 10.3389/fcvm.2022.988360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
According to traditional Chinese medicine (TCM), chronic heart failure has the basic pathological characteristics of “heart-kidney yang deficiency.” Chronic heart failure with heart- and kidney-Yang deficiency has good overlap with New York Heart Association (NYHA) classes III and IV. Traditional Chinese medicine classical prescriptions for the treatment of chronic heart failure often take “warming and tonifying kidney-Yang” as the core, supplemented by herbal compositions with functions of “promoting blood circulation and dispersing blood stasis.” Nowadays, there are still many classical and folk prescriptions for chronic heart failure treatment, such as Zhenwu decoction, Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili Qiangxin capsule. This review focuses on classical formulations and their active constituents that play a key role in preventing chronic heart failure by suppressing inflammation and modulating immune and neurohumoral factors. In addition, given that mitochondrial metabolic reprogramming has intimate relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory role of classical prescriptions and their active components in metabolic reprogramming, including glycolysis and lipid β-oxidation, is also presented. Although the exact mechanism is unknown, the classical TCM prescriptions still have good clinical effects in treating chronic heart failure. This review will provide a modern pharmacological explanation for its mechanism and offer evidence for clinical medication by combining TCM syndrome differentiation with chronic heart failure clinical stages.
Collapse
|
13
|
Evening Primrose Extracts Inhibit PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Regulating Cell-Cycle-Related Proteins. Curr Issues Mol Biol 2022; 44:1928-1940. [PMID: 35678660 PMCID: PMC9164085 DOI: 10.3390/cimb44050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 μg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 μg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 μg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins.
Collapse
|
14
|
The Apolipoprotein C1 is involved in breast cancer progression via EMT and MAPK/JNK pathway. Pathol Res Pract 2022; 229:153746. [DOI: 10.1016/j.prp.2021.153746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
|
15
|
Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, Xiang M, Shen Z, Xin L, Lu Y, Gao J, Cui X. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct 2021; 12:12194-12220. [PMID: 34752593 DOI: 10.1039/d1fo01935j] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) and diabetes are the leading causes of death worldwide, which underlines the urgent necessity to develop new pharmacotherapies. Cinnamon has been an eminent component of spice and traditional Chinese medicine for thousands of years. Numerous lines of findings have elucidated that cinnamon has beneficial effects against CVDs in various ways, including endothelium protection, regulation of immune response, lowering blood lipids, antioxidative properties, anti-inflammatory properties, suppression of vascular smooth muscle cell (VSMC) growth and mobilization, repression of platelet activity and thrombosis and inhibition of angiogenesis. Furthermore, emerging evidence has established that cinnamon improves diabetes, a crucial risk factor for CVDs, by enhancing insulin sensitivity and insulin secretion; regulating the enzyme activity involved in glucose; regulating glucose metabolism in the liver, adipose tissue and muscle; ameliorating oxidative stress and inflammation to protect islet cells; and improving diabetes complications. In this review, we summarized the mechanisms by which cinnamon regulates CVDs and diabetes in order to provide a theoretical basis for the further clinical application of cinnamon.
Collapse
Affiliation(s)
- Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongchen Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuqin Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhilin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yi Qu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
16
|
Yu J, Li W, Xiao X, Huang Q, Yu J, Yang Y, Han T, Zhang D, Niu X. (-)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro. Food Funct 2021; 12:8715-8727. [PMID: 34365492 DOI: 10.1039/d1fo00846c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(-)-Epicatechin gallate (ECG), as a compound in green tea extract polyphenols, has specific therapeutic effects against oxidative stress. Oxidative stress exists throughout the pathological development of atherosclerosis. In this study, two atherosclerosis models, oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs) and high fat diet (HFD)-induced ApoE-/- mice, were applied to explore the mechanism of ECG intervention on AS. In vivo and in vitro studies showed that ECG reduced the level of MDA and increased the activity of SOD, which are oxidative stress factors. ECG also improved HFD-induced disorder of lipid factor expression in the serum of ApoE-/- mice and alleviated oxidative stress by enhancing the antioxidant activity. The potential mechanism was supposed to be the inhibition of the phosphorylation of p65 by ECG in the NF-κB pathway in the aorta, thereby blocking the expression of inflammatory mediators. In addition, ECG increased the stability of atherosclerosis plaques by reducing the expression of MMP-2 and ICAM-1 in atherosclerosis diseased tissues. ECG reduced lipid accumulation in the aorta and its roots and also plaque neoplasia. Western blotting experiments indicated that ECG increased the nuclear transfer of Nrf2 and the expression of heme oxygenase 1 (HO-1) was increased. These results demonstrated that ECG significantly reduced the formation of aortic plaque in ApoE-/- mice which was possibly triggered by the inhibition of hyperlipidemia and oxidative stress that exhibited the anti-atherosclerotic potential.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, P.R. China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, P.R. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
17
|
Yu J, Li W, Zhao L, Qiao Y, Yu J, Huang Q, Yang Y, Xiao X, Guo D. Quyu Shengxin capsule (QSC) inhibits Ang-II-induced abnormal proliferation of VSMCs by down-regulating TGF-β, VEGF, mTOR and JAK-STAT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114112. [PMID: 33905820 DOI: 10.1016/j.jep.2021.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quyu Shengxin capsule (QSC) is an herbal compound commonly used to treat blood stasis syndrome in China, and blood stasis syndrome is considered to be the root of cardiovascular diseases (CVD) in traditional Chinese medicine. However, the potential molecular mechanism of QSC is still unknown. AIM OF STUDY To study the therapeutic effect of QSC on the abnormal proliferation of VSMCs induced by Ang-II, and to explore its possible mechanism of action. MATERIALS AND METHODS Qualitative analysis and quality control of QSC through UPLC-MS/MS and UPLC. The rat thoracic aorta vascular smooth muscle cells (VSMCs) were cultured in vitro, and then stimulated with Angiotensin Ⅱ (Ang-II) (10-7 mol/L) for 24 h to establish a cardiovascular cell model. The cells were then treated with different concentrations of QSC drug-containing serum or normal goat serum. MTT assay was used to detect the viability of VSMCs and abnormal cell proliferation. In order to analyze the possible signal transduction pathways, the content of various factors in the supernatant of VSMCs was screened and determined by means of the Luminex liquid suspension chip detection platform, and the phosphoprotein profile in VSMCs was screened by Phospho Explorer antibody array. RESULTS Compared with the model group, serum cell viability and inflammatory factor levels with QSC were significantly decreased (P < 0.001). In addition, the expression levels of TGF-β, VEGF, mTOR and JAK-STAT in the QSC-containing serum treatment group were significantly lower than those in the model group. QSC may regulate the pathological process of CVD by reducing the levels of inflammatory mediators and cytokines, and protecting VSMCs from the abnormal proliferation induced by Ang-II. CONCLUSION QSC inhibits Ang-II-induced abnormal proliferation of VSMCs, which is related to the down-regulation of TGF-β, VEGF, mTOR and JAK-STAT pathways.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Lintao Zhao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China
| | - Yuan Qiao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dong Guo
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China.
| |
Collapse
|
18
|
Delivery of Cinnamic Aldehyde Antioxidant Response Activating nanoParticles (ARAPas) for Vascular Applications. Antioxidants (Basel) 2021; 10:antiox10050709. [PMID: 33946889 PMCID: PMC8145619 DOI: 10.3390/antiox10050709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Selective delivery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators to the injured vasculature at the time of vascular surgical intervention has the potential to attenuate oxidative stress and decrease vascular smooth muscle cell (VSMC) hyperproliferation and migration towards the inner vessel wall. To this end, we developed a nanoformulation of cinnamic aldehyde (CA), termed Antioxidant Response Activating nanoParticles (ARAPas), that can be readily loaded into macrophages ex vivo. The CA-ARAPas-macrophage system was used to study the effects of CA on VSMC in culture. CA was encapsulated into a pluronic micelle that was readily loaded into both murine and human macrophages. CA-ARAPas inhibits VSMC proliferation and migration, and activates Nrf2. Macrophage-mediated transfer of CA-ARAPas to VSMC is evident after 12 h, and Nrf2 activation is apparent after 24 h. This is the first report, to the best of our knowledge, of CA encapsulation in pluronic micelles for macrophage-mediated delivery studies. The results of this study highlight the feasibility of CA encapsulation and subsequent macrophage uptake for delivery of cargo into other pertinent cells, such as VSMC.
Collapse
|
19
|
Enayati A, Johnston TP, Sahebkar A. Anti-atherosclerotic Effects of Spice-Derived Phytochemicals. Curr Med Chem 2021; 28:1197-1223. [PMID: 32368966 DOI: 10.2174/0929867327666200505084620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Atherosclerosis is characterized by oxidized lipid deposition and inflammation in the arterial wall and represents a significant problem in public health and medicine. Some dietary spices have been widely used in many countries; however, the mechanism of their action as it relates to the prevention and treatment of atherosclerosis is still poorly understood. In this review, we focus on the properties of various spice-derived active ingredients used in the prevention and treatment of atherosclerosis, as well as associated atherosclerotic risk factors. We provide a summary of the mechanisms of action, epidemiological analyses, and studies of various components of spice used in the clinic, animal models, and cell lines related to atherosclerosis. Most notably, we focused on mechanisms of action by which these spice-derived compounds elicit their lipid-lowering, anti-inflammatory, antioxidant, and immunomodulatory properties, as well as their involvement in selected biochemical and signal transduction pathways. It is suggested that future research should aim to design well-controlled clinical trials and more thoroughly investigate the role of spices and their active components in the prevention/treatment of atherosclerosis. Based on this literature review, it appears that spices and their active components are well tolerated and have few adverse side effects and, therefore, provide a promising adjunctive treatment strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
20
|
Lee AY, Lee JY, Chun JM. Exploring the Mechanism of Gyejibokryeong-hwan against Atherosclerosis Using Network Pharmacology and Molecular Docking. PLANTS 2020; 9:plants9121750. [PMID: 33321972 PMCID: PMC7764045 DOI: 10.3390/plants9121750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Gyejibokryeong-hwan (GBH) is a traditional formula comprised of five herbal medicines that is frequently used to treat blood stasis and related complex multifactorial disorders such as atherosclerosis. The present study used network pharmacology and molecular docking simulations to clarify the effect and mechanism of the components of GBH. Active compounds were selected using Oriental Medicine Advanced Searching Integrated System (OASIS) and the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and target genes linked to the selected components were retrieved using Search Tool for Interacting Chemicals (STITCH) and GeneCards. Functional analysis of potential target genes was performed through the Annotation, Visualization and Integrated Discovery (DAVID) database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and molecular docking confirmed the correlation between five core compounds (quercetin, kaempferol, baicalein, ellagic acid, and baicalin) and six potential target genes (AKT1, CASP3, MAPK1, MAPK3, NOS2, and PTGS2). Molecular docking studies indicated that quercetin strongly interacted with six potential target proteins. Thus, these potential target proteins were closely related to TNF, HIF-1, FoxO, and PI3K-Akt signal pathways, suggesting that these factors and pathways may mediate the beneficial effects of GBH on atherosclerosis. Our results identify target genes and pathways that may mediate the clinical effects of the compounds contained within GBH on atherosclerosis.
Collapse
Affiliation(s)
- A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
| | - Joo-Youn Lee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Jin Mi Chun
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
- Correspondence: ; Tel.: +82-613-387-130
| |
Collapse
|
21
|
Li W, Yu J, Xiao X, Li W, Zang L, Han T, Zhang D, Niu X. The inhibitory effect of (-)-Epicatechin gallate on the proliferation and migration of vascular smooth muscle cells weakens and stabilizes atherosclerosis. Eur J Pharmacol 2020; 891:173761. [PMID: 33249078 DOI: 10.1016/j.ejphar.2020.173761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) lesions play an important role in atherosclerosis. The latest findings indicate that green tea extract has potential benefits for patients with atherosclerosis, but the components and mechanisms of action are unknown. (-)-Epicatechin gallate (ECG) is the main active ingredient extracted from green tea and has significant biological functions. However, the mechanism of ECG in atherosclerosis remains unclear. Therefore, we investigated the intervention of ECG on VSMCs induced by oxidized low-density lipoprotein (ox-LDL). The results show that ECG reduces the inflammatory response by preventing the overproduction of inflammatory mediators in VSMCs. ECG regulates the cell cycle and down-regulates the expression of proliferating cell nuclear antigen (PCNA) and cyclinD1, and then exerts an anti-proliferative effect. Furthermore, inhibition of the expression of matrix metalloproteinase 2 (MMP-2) and intercellular adhesion molecule 1 (ICAM-1) may be the mechanism by which ECG inhibits the migration of ox-LDL-induced VSMCs. Oil red O staining results show that ECG can improve cell foaming and reduce the content of total cholesterol (TC). In addition, ECG significantly reduces reactive oxygen species activity and also reduces the expression of p-p38, p-JNK, p-ERK1/2, p-IκBα, p-NF-κBp65, and TLR4. These results indicate that ECG has potential clinical applications for preventing atherosclerosis.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenqi Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
22
|
Hu Y, Li H, Li R, Wu Z, Yang W, Qu W. Puerarin protects vascular smooth muscle cells from oxidized low-density lipoprotein-induced reductions in viability via inhibition of the p38 MAPK and JNK signaling pathways. Exp Ther Med 2020; 20:270. [PMID: 33199995 DOI: 10.3892/etm.2020.9400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Puerarin belongs to the family of flavonoids extracted from Pueraria lobata (Wild.) Ohwi, which exhibits antioxidative, anti-inflammatory, anti-hyperglycemic, antitumor, anti-hypertensive and anti-atherosclerotic activities. In the present study, the effects of puerarin on oxidized low-density lipoprotein (ox-LDL)-stimulated vascular smooth muscle cells (VSMCs) were explored to understand the mechanisms underlying the anti-atherosclerotic effects of puerarin. VSMCs were treated with various concentrations of puerarin (0, 20, 40 and 80 µM) prior to stimulation with ox-LDL (50 µg/ml). VSMC viability was evaluated by performing MTT and Cell Counting Kit-8 assays. Moreover, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured by performing ELISAs. The mRNA expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined via reverse transcription-quantitative PCR. Western blotting was conducted to assess the levels of p38-MAPK and JNK phosphorylation. The results indicated that puerarin inhibited ox-LDL-induced VSMC viability. Moreover, puerarin significantly decreased the mRNA expression levels of IL-6 and TNF-α, significantly reduced the production of MDA and significantly increased SOD activity in ox-LDL-stimulated VSMCs. Puerarin also inhibited ox-LDL-induced phosphorylation of p38 and JNK in VSMCs. The results suggested that puerarin reduced ox-LDL-induced VSMC viability via inhibition of the p38 MAPK and JNK signaling pathways. The present study provided theoretical evidence that puerarin may serve as a therapeutic agent to reduce the development of atherosclerosis.
Collapse
Affiliation(s)
- Yanwu Hu
- Department of Traditional Chinese Medicine, School of Medicine, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Haitao Li
- Department of Pharmacy, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Ruili Li
- Department of Pharmacy, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Zijing Wu
- Department of Traditional Chinese Medicine, School of Medicine, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Wenxin Yang
- Department of Traditional Chinese Medicine, School of Medicine, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Wei Qu
- Department of Pharmacy, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
23
|
CTRP9 induces macrophages polarization into M1 phenotype through activating JNK pathway and enhances VSMCs apoptosis in macrophages and VSMCs co-culture system. Exp Cell Res 2020; 395:112194. [PMID: 32712018 DOI: 10.1016/j.yexcr.2020.112194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Inflammation plays a critical role in the development of atherosclerosis (AS), which has been identified as a major predisposing factor for stroke. Macrophages and VSMCs are associated with plaque formation and progression. Macrophages can dynamically change into two main functional phenotypes, namely M1 and M2, they can produce either pro-inflammatory or anti-inflammatory factors which may affect the outcome of inflammation. As a member of CTRPs family, CTRP9 has been reported play important protective roles in the cardiovascular system. However, whether CTRP9 can regulate macrophage activation status in inflammatory responses and have effect on VSMCs behaviors in co-culture system have not been fully investigated. In the present study, using peritoneal macrophages treated with CTRP9, we found that CTRP9 facilitated macrophages towards M1 phenotype, promoted TNF-α secretion and MMPs expression. CTRP9 showed synergistic effect with LPS in inducing M1 macrophages. In macrophages-VSMCs co-culture system, apoptosis and down-regulated proliferation of VSMCs were accelerated with CTRP9-treated macrophages. Then we attempted to explore the underlying molecular mechanisms of CTRP9 resulting in M1 activation. The c-Jun NH2-terminal kinases (JNK) are members of the mitogen activated protein kinases (MAPK) family, plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival. We found JNK expression was upregulated following CTRP9 stimulation, and inhibiting JNK phosphorylation level was associated with decreased expression of M1 markers and TNF-α concentration. Moreover, VSMCs apoptosis were ameliorated after inhibition of JNK. These results suggested that CTRP9 may promote macrophage towards M1 activation status through JNK signaling pathway activation.
Collapse
|
24
|
Chronic treatment with cinnamaldehyde prevents spontaneous atherosclerotic plaque development in ovariectomized LDLr-/- female mice. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Kim NY, Trinh NT, Ahn SG, Kim SA. Cinnamaldehyde protects against oxidative stress and inhibits the TNF‑α‑induced inflammatory response in human umbilical vein endothelial cells. Int J Mol Med 2020; 46:449-457. [PMID: 32319555 PMCID: PMC7255462 DOI: 10.3892/ijmm.2020.4582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress and inflammation play critical roles in the development of cardiovascular diseases. Cinnamaldehyde (CA) is a natural compound from Cinnamomum cassia, and its anticancer, antimicrobial and anti-inflammatory activities have been widely investigated. In the present study, the cytoprotective and anti-inflammatory effects of CA on H2O2- or tumor necrosis factor (TNF)-α-exposed human umbilical vein endothelial cells (HUVECs) were examined. CA and its natural derivative, 2-methoxycinnamaldehyde (MCA), markedly increased the cellular protein level of heme oxygenase-1 (HO-1) and promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus. CA-mediated Nrf2/HO-1 activation protected the HUVECs from H2O2-induced oxidative stress, which promotes apoptosis. HO-1 depletion by siRNA attenuated the CA-mediated cell protective effects against oxidative stress. Additionally, CA markedly inhibited the adhesion of U937 monocytic cells to HUVECs by decreasing the expression level of vascular cell adhesion protein 1 (VCAM-1). An in vivo experiment confirmed the anti-inflammatory effects of CA, as lipopoly-saccharide (LPS)-induced inflammatory cell infiltration was effectively inhibited by the compound. Overall, these observations suggest that CA may be used as a therapeutic agent for oxidative stress-mediated cardiovascular diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Nam-Yi Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Nguyet-Tran Trinh
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, Chosun University College of Dentistry, Gwangju 61452, Republic of Korea
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju, North Gyeongsang 38066, Republic of Korea
| |
Collapse
|
26
|
Zhu W, Wu J, Guo X, Sun X, Li Q, Wang J, Chen L. Development and physicochemical characterization of chitosan hydrochloride/sulfobutyl ether-β-cyclodextrin nanoparticles for cinnamaldehyde entrapment. J Food Biochem 2020; 44:e13197. [PMID: 32189350 DOI: 10.1111/jfbc.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
In this work, the cinnamaldehyde (CA) loaded nanoparticles were synthesized by directly cross-linking chitosan hydrochloride (CSH) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD). The CA/SBE-β-CD inclusion complex was firstly prepared, and its highest encapsulation efficiency (EE) was 86.34%. Field Emission Scanning Electron Microscope results indicated that the inclusion complex showed massive aggregates with a coarse and fluffy texture and irregular surface. Then, the inclusion complex interacted with CSH to form nanoparticles. The EE of CA in nanoparticles was improved. Atomic force microscopy showed the nanoparticles had regular and spherical morphology. Fourier transform infrared spectroscopy analysis demonstrated that CA was mainly encapsulated in the inner place of CSH/SBE-β-CD nanoparticles (CSNs). The enhanced thermal stability of the nanoparticles was found in differential scanning calorimeter. X-ray diffraction implied that CA-CSNs existed in the amorphous state. CA-CSNs had excellent slow release property. Further, the bacteriostatic effect of CA-CSNs was much better than that of CA and CSNs. All the results indicated that CSNs can be used as a promising carrier to encapsulate CA. PRACTICAL APPLICATIONS: CA is an effective antimicrobial and generally recognized as Safe-GRAS. CA also exhibits many other bioactivities and has been commonly used for digestive, cardiovascular and immune system diseases. However, CA is easy to be oxidized and volatilized during storage for poor water solubility. The nanoencapsulations display the capacities of enhancing solubility of bioactive compounds, protecting them from degradation, and prolonging their residence. In this manuscript, CA loaded nanoparticles were investigated. The results suggested that the nanoencapsulation could benefit for improving water solubility and stability of CA. This strategy could be helpful for its application and development in food preservation.
Collapse
Affiliation(s)
- Wenjin Zhu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Jiulin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Xiaoban Guo
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Xinyu Sun
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Qingxiang Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Jianhua Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Li Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| |
Collapse
|
27
|
Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments. Heart Vessels 2020; 35:1012-1024. [PMID: 31960147 DOI: 10.1007/s00380-020-01556-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Lipocalin-2 (LCN2), a multiple bioactive hormone particularly expressed in adipose tissue, neutrophils, and macrophages, is known to exhibit anti-microbial effect, increase inflammatory cytokine levels, and maintain glucose homeostasis. Serum LCN2 level is positively correlated with the severity of coronary artery disease. However, it still remains unknown whether LCN2 affects atherogenesis. We assessed the effects of LCN2 on the inflammatory response and monocyte adhesion in human umbilical vein endothelial cells (HUVECs), inflammatory phenotype and foam cell formation in THP1 monocyte-derived macrophages, and migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro and aortic lesions in Apoe-/- mice in vivo. LCN2 and its receptor, low-density lipoprotein (LDL)-related protein-2, were expressed in THP1 monocytes, macrophages, HASMCs, and HUVECs. LCN2 significantly enhanced THP1 monocyte adhesion to HUVECs accompanied with upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin associated with nuclear factor-κB (NF-κB) upregulation in HUVECs. LCN2 significantly increased HUVEC proliferation and oxidized LDL-induced foam cell formation in THP1 monocyte-derived macrophages. LCN2 significantly increased the inflammatory M1 phenotype associated with NF-κB upregulation during differentiation of THP1 monocytes into macrophages. In HASMCs, LCN2 significantly promoted the migration and collagen-1 expression without inducing proliferation, which are associated with increased protein expression of phosphoinositide 3-kinase and phosphorylation of Akt, extracellular signal-regulated kinase, c-jun-N-terminal kinase, and NF-κB. Chronic LCN2 infusion into Apoe-/- mice significantly accelerated the development of aortic atherosclerotic lesions, with increased intraplaque monocyte/macrophage infiltration and pentraxin-3 and collagen-1 expressions. Our results suggested that LCN2 accelerates the development of atherosclerosis. Thus, LCN2 could serve as a novel therapeutic target for atherosclerotic diseases.
Collapse
|
28
|
Ren H, Chen Z, Yang L, Xiong W, Yang H, Xu K, Zhai E, Ding L, He Y, Song X. Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer. Cancer Manag Res 2019; 11:4917-4930. [PMID: 31213910 PMCID: PMC6549782 DOI: 10.2147/cmar.s192529] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Identifying high-efficiency prognostic markers for colorectal cancer (CRC) is necessary for clinical practice. Increasing evidence demonstrates that apolipoprotein C1 (APOC1) promotes carcinogenesis in some human cancers. However, the expression status and biological function of APOC1 in CRC remain unclear. Materials and methods: We detected the association between APOC1 expression and clinicopathological features in 140 CRC patients by immunohistochemistry. Small interfering RNA (siRNA) technology was used to downregulate APOC1 expression in CRC cells. Cell proliferation was estimated by CCK8 and clonogenic assays. The cell cycle and apoptosis were analyzed by flow cytometry. Cell migration and invasion were examined by a transwell assay. Gene set enrichment analysis (GSEA) and protein expression of signaling pathways were used to suggest the possible APOC1-associated pathways in CRC. Results: APOC1 was highly expressed in CRC tissues. High immunohistochemistry (IHC) expression of APOC1 was correlated with the N stage, M stage and TNM stage. High IHC APOC1 expression in CRC tissues was associated with poor prognosis. Univariate and multivariate Cox regression analyses showed that APOC1 was an independent risk factor for OS. Cell proliferation of CRC cell lines was inhibited by the downregulation of APOC1. Moreover, si-APOC1 transfection induced cell cycle arrest but low apoptosis increases by regulating the expression of related proteins. Cell migration and invasion were also inhibited by the downregulation of APOC1. The Cancer Genome Atlas Colorectal Adenocarcinoma (TCGA COAD-READ) dataset analyzed by GSEA showed that APOC1 might be involved in the mitogen-activated protein kinase (MAPK) signaling pathway, which was further preliminarily confirmed by Western blotting. Conclusion: APOC1 was overexpressed in CRC tissues, and a high level of APOC1 contributed to a poor prognosis. APOC1 expression influenced the cell proliferation ability and motility capacity of CRC via the MAPK pathway. APOC1 could act as a novel prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Hui Ren
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Digestive Disease, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang Yang
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weixin Xiong
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hong Yang
- Department of Operating Room, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaiwu Xu
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ertao Zhai
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Ding
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yulong He
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Digestive Disease, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xingming Song
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Adiponectin inhibits proliferation of vascular endothelial cells induced by Ox-LDL by promoting dephosphorylation of Caveolin-1 and depolymerization of eNOS and up-regulating release of NO. Int Immunopharmacol 2019; 73:424-434. [PMID: 31152980 DOI: 10.1016/j.intimp.2019.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Oxidized low density lipoprotein (ox-LDL) can induce the proliferation and differentiation of endothelial cells, which is one of the important mechanisms of ox-LDL atherosclerosis. Adiponectin is an endogenous bioactive polypeptide secreted by adipocytes, it participates in the metabolism of fat and glucose. It has the effect of reducing blood triglyceride and LDL content. Adiponectin also inhibits the abnormal proliferation and migration of endothelial cells, but its molecular mechanism is unclear. In this study, we used cell model of Ox-LDL-induced human aortic endothelial cells (HAECs) proliferation to analyze the molecular mechanism of APN inhibiting HAECs abnormal proliferation. The results showed that APN could inhibit the cell viability and DNA synthesis of HAECs after Ox-LDL treatment, up-regulate the apoptosis level and reduce the proportion of S + G2 phase cells. Further analysis showed that adiponectin could promote the dephosphorylation of Caveolin-1, which could dissociate eNOS and Caveolin-1, promote the phosphorylation of eNOS and enhance the synthesis of NO. NO increased expression levels of cleaved caspase 3 and p21 in the cells and inhibited the abnormal proliferation of HAECs. The regulation of phosphorylation and dephosphorylation of Caveolae-1 plays a key role in this process. Further study of the molecular mechanism of Caveolae-1 in the inhibition of HAECs abnormal proliferation by APN may reveal the potential of APN in the treatment of cardiovascular diseases.
Collapse
|
30
|
Dai L, Zhou J, Li T, Qian Y, Jin L, Zhu C, Li S. STRIP2 silencing inhibits vascular smooth muscle cell proliferation and migration via P38-AKT-MMP-2 signaling pathway. J Cell Physiol 2019; 234:22463-22476. [PMID: 31093976 DOI: 10.1002/jcp.28810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
STRIP2 (FAM40B) was reported to regulate tumor cell migration. Our study aims to discuss the effect of STRIP2 in mouse aortic smooth muscle cell (MOVAS) proliferation and migration processes, which contributes greatly to atherosclerosis formation. In MOVAS cells, STRIP2 depletion suppressed cell proliferation and migration, which were related to a remarkable decrease in matrix metalloproteinases-2 (MMP-2)/MMP-9 expression. Additionally, P38 mitogen-activated protein kinases and Protein kinase B (AKT) are inactivated while extracellular signal-regulated kinase (ERK1/2) and jun N-terminal kinase (JNK) are activated upon STRIP2 silencing. SB203580 (P38 inhibitor) further reduced AKT phosphorylation (p-AKT) while dehydrocorydaline chloride (Dc; P38 activator) reversed this effect. Furthermore, Dc significantly recovered MMP-2 expression in STRIP2-knockdown cells. As expected, overexpressing STRIP2 exhibited a contrary effect. Dc and AKT activator SC79 reversed the inhibition of cell proliferation and migration induced by STRIP2 silencing. Interestingly, STRIP2 depletion increased vascular endothelial growth factor level significantly. Taken together, STRIP2 contributed to cell proliferation and migration through P38-AKT-MMP-2 signaling in MOVAS cells, indicating the importance of STRIP2 in atherosclerosis.
Collapse
Affiliation(s)
- Li Dai
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE−/− mice. Food Funct 2019; 10:4001-4009. [DOI: 10.1039/c9fo00396g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde is a flavor isolated from the bark of Cinnamomum cassia Presl and exerts anti-inflammation effects in various diseases.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenbing Zhi
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
- Shaanxi Academy of Traditional Chinese Medicine
| | - Jinmeng Zhao
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenqi Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Lulu Zang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Fang Liu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Xiaofeng Niu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| |
Collapse
|