1
|
Li S, Xin Q, Yan Y, Wang X, Ai H, Que B, Gong W, Nie S. Pde5 Inhibition Reduced Blood Pressure and Alleviated Target Organ Damage in Chronic Intermittent Hypoxia. J Cardiovasc Pharmacol 2024; 84:81-91. [PMID: 38030140 PMCID: PMC11230658 DOI: 10.1097/fjc.0000000000001519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
ABSTRACT The role of phosphodiesterase 5 (Pde5) in obstructive sleep apnea-induced damage remains unclear. Our study aimed to investigate the role of Pde5 in the chronic intermittent hypoxia (CIH) model. C57BL/6J wild-type (WT) mice (n = 48) and Pde5 knockout (Pde5 -/- ) mice (n = 24) were randomly assigned to CIH group and room air group. After 6 weeks, some WT mice (n = 24) in CIH group were given sildenafil or saline gavage for another 4 weeks. Blood pressure was regularly measured during the experiment. Echocardiography was used to estimate cardiac function. We collected organs from each group of mice and measured their physical indicators. Histochemical staining was used to explore the size of cardiomyocyte and fibrosis area of various organs. Cyclic guanosine monophosphate and malondialdehyde concentrations in serum were measured by ELISA assay. Compared with the RA-treated group, the 6-week CIH resulted in a significant increase in blood pressure, altered heart structure, and reduced serum cyclic guanosine monophosphate in WT mice. Pde5 -/- mice and sildenafil intragastric administration significantly reduced systolic blood pressure in CIH condition and attenuated the damage of target organs. In CIH model, we found that the cardiomyocyte size and fibrosis area of heart and kidney significantly reduced in Pde5 -/- groups. Besides, endogenous and exogenous inhibition of Pde5 reduced malondialdehyde level and inflammatory and oxidative stress markers expression in CIH condition. In this study, we found that Pde5 inhibition could reduce blood pressure and alleviate target organ damage in the CIH model, which may be mediated through the oxidative stress pathway.
Collapse
Affiliation(s)
- Siyi Li
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Qingjie Xin
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yan Yan
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Xiao Wang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Hui Ai
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Bin Que
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
2
|
Souza ACD, Silva DGD, Jezuíno JDS, Ferreira ARO, Ribeiro MVG, Vidigal CB, Moura KF, Erthal RP, Mathias PCDF, Fernandes GSA, Palma-Rigo K, Ceravolo GS. Protein restriction during peripubertal period impairs endothelial aortic function in adult male Wistar rats. J Dev Orig Health Dis 2023; 14:451-458. [PMID: 37198976 DOI: 10.1017/s2040174423000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein restriction during early phases of body development, such as intrauterine life can favor the development of vascular disorders. However, it is not known if peripubertal protein restriction can favor vascular dysfunction in adulthood. The present study aimed to evaluated whether a protein restriction diet during peripubertal period favors endothelial dysfunction in adulthood. Male Wistar rats from postnatal day (PND) 30 until 60 received a diet with either 23% protein (CTR group) or with 4% protein (LP group). At PND 120, the thoracic aorta reactivity to phenylephrine, acetylcholine, and sodium nitroprusside was evaluated in the presence or absence of: endothelium, indomethacin, apocynin and tempol. The maximum response (Rmax) and pD2 (-log of the concentration of the drug that causes 50% of the Rmax) were calculated. The lipid peroxidation and catalase activity were also evaluated in the aorta. The data were analyzed by ANOVA (one or two-ways and Tukey's) or independent t-test; the results were expressed as mean ± S.E.M., p < 0.05. The Rmax to phenylephrine in aortic rings with endothelium were increased in LP rats when compared with the Rmax in CTR rats. Apocynin and tempol reduced Rmax to phenylephrine in LP aortic rings but not in CTR. The aortic response to the vasodilators was similar between the groups. Aortic catalase activity was lower and lipid peroxidation was greater in LP compared to CTR rats. Therefore, protein restriction during the peripubertal period causes endothelial dysfunction in adulthood through a mechanism related to oxidative stress.
Collapse
Affiliation(s)
- Amanda Cristina de Souza
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Deborah Gomes da Silva
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliana da Silva Jezuíno
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
| | - Camila Borecki Vidigal
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Kawane Fabricio Moura
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Rafaela Pires Erthal
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Glaura Scantamburlo Alves Fernandes
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Kesia Palma-Rigo
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
- Adventist College of Parana, Ivatuba, Brazil
| | - Graziela Scalianti Ceravolo
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
3
|
Liao J, Zhang Y, Ma C, Wu G, Zhang W. Microbiome-metabolome reveals that the Suxiao Jiuxin pill attenuates acute myocardial infarction associated with fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116529. [PMID: 37086873 DOI: 10.1016/j.jep.2023.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Suxiao Jiuxin pill (SJP) is a Chinese medical patent drug on the national essential drug list of China, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been elucidated clearly, especially its relationship with the gut microbiota. AIM OF THE STUDY This study aimed to investigate the cardioprotective effect of SJP against isoproterenol-induced acute myocardial infarction (AMI) by integrating the gut microbiome and metabolome. METHODS A rat model of AMI was generated using isoproterenol. Firstly, the effect of antibiotic (ABX) treatment on the blood absorption and excretion of the main components of SJP were studied. Secondly, 16S rRNA sequencing and untargeted metabolomics were used to discover the improvement of SJP treatment on gut microbiota and host metabolism in AMI rats. Finally, targeted metabolomics was used to verify the effects of SJP treatment on host metabolism in AMI rats. RESULT The results showed that ABX treatment could affect the blood absorption and fecal excretion of the main active components of SJP. At the same time, SJP can restore the richness and diversity of gut microbiota, and multiple gut microbiota (including Jeotgalicoccus, Lachnospiraceae, and Blautia) are significantly associated with fatty acids. Untargeted metabolomics also found that SJP could restore the levels of various fatty acid metabolites in serum and cecal contents (p < 0.01, FC > 1.5 and VIP >1). Targeted metabolomics further confirmed that 41, 21, and 39 fatty acids were significantly altered in serum, cecal contents, and heart samples, respectively. Interestingly, these fatty acids belong to the class of eicosanoids, and SJP can significantly downregulate these eicosanoids in AMI rats. CONCLUSION The results of this study suggest that SJP may exert its cardioprotective effects by remodeling the gut microbiota and host fatty acid metabolism.
Collapse
Affiliation(s)
- Jingyu Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chi Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Chatturong U, Martin H, Totoson P, Ingkaninan K, Temkitthawon P, Sermsenaphorn S, Somarin T, Konsue A, Gleeson MP, Demougeot C, Chootip K. Quinazoline-based human phosphodiesterase 5 inhibitors exhibited a selective vasorelaxant effect on rat isolated pulmonary arteries involving NO-sGC-cGMP pathway and calcium inhibitory effects. Vascul Pharmacol 2022; 147:107111. [PMID: 36162651 DOI: 10.1016/j.vph.2022.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Phosphodiesterase 5 (PDE5) inhibitors are an attractive option among the currently available therapies in the management of pulmonary arterial hypertension (PAH). Good selectivity for PDE5 is associated with reduced side effects and greater vasorelaxant effect on pulmonary arteries (PA). This study investigated the vasorelaxant effects of a series of quinazoline-based PDE5 inhibitors and their precise mechanisms action using rat isolated PA and aorta, as compared to sildenafil. Their effects on rat hepatocytes (viability and CYP activities) were also evaluated. Compounds 5 and 11 displayed lower human PDE5 IC50 of the analogs studied here and induced a greater relaxant effect on PA (EC50 0.94 ± 0.30 and 1.03 ± 0.23 μM, respectively). As compared to sildenafil (EC50 = 0.05 ± 0.02 μM on PA), the relaxant effect of 5 and 11 on PA was lower but their selectivity for PA compared to aorta was higher. The effects of 5 and 11 were reduced by NG-nitro-L-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one, but not by indomethacin or potassium channels blockers. They also enhanced the relaxant effect of sodium nitroprusside, and inhibited extracellular Ca2+ influx and intracellular Ca2+release. Compounds 5 and 11 did not reduce hepatocyte viability except at concentration > 10 μM, inhibited CYP3A at 10 μM, like sildenafil, but did not induce CYP1A. In conclusion, this study identified 2 quinazoline analogues with good PDE5 inhibitory activity and good selectivity for the pulmonary vasculature. Their relaxant effect involves both the potentiation of nitric oxide-sGC-cGMP pathway and calcium inhibition. These compounds are potential leads for developing new drugs for PAH.
Collapse
Affiliation(s)
- Usana Chatturong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand; PEPITE EA4267, Université Bourgogne Franche-Comté, Besançon 25030, France
| | - Hélène Martin
- PEPITE EA4267, Université Bourgogne Franche-Comté, Besançon 25030, France
| | - Perle Totoson
- PEPITE EA4267, Université Bourgogne Franche-Comté, Besançon 25030, France
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Prapapan Temkitthawon
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Saharat Sermsenaphorn
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
| | - Thanachon Somarin
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
| | - Adchatawut Konsue
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
| | - Céline Demougeot
- PEPITE EA4267, Université Bourgogne Franche-Comté, Besançon 25030, France
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
5
|
Ala M, Mohammad Jafari R, Ala M, Hejazi SM, Tavangar SM, Mahdavi SR, Dehpour AR. Sildenafil improves radiation-induced oral mucositis by attenuating oxidative stress, NF-κB, ERK and JNK signalling pathways. J Cell Mol Med 2022; 26:4556-4565. [PMID: 35810384 PMCID: PMC9357636 DOI: 10.1111/jcmm.17480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Radiation-induced oral mucositis is a common and dose-limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti-inflammatory and anti-cancer effects. In this study, we investigated the effect of sildenafil on radiation-induced mucositis in rats. Two doses of radiation (8 and 26 Gy X-ray) were used to induce low-grade and high-grade oral mucositis, separately. A control group and three groups of sildenafil citrate-treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF-κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1β, IL6 and TNF-α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF-κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high-dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high-dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation-induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Ala
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sedigheh Marjaneh Hejazi
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Advanced Medical Technologies and Equipment Institute Research Center for Molecular and Cellular in Imaging, Bio-optical Imaging Group, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Iran
| | - Seied Rabi Mahdavi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Aires R, Gobbi Amorim F, Côco LZ, da Conceição AP, Zanardo TÉC, Taufner GH, Nogueira BV, Vasquez EC, Melo Costa Pereira T, Campagnaro BP, Dos Santos Meyrelles S. Use of kefir peptide (Kef-1) as an emerging approach for the treatment of oxidative stress and inflammation in 2K1C mice. Food Funct 2022; 13:1965-1974. [PMID: 35088783 DOI: 10.1039/d1fo01798e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefits of kefir consumption are partially due to the rich composition of bioactive molecules released from its fermentation. Angiotensin-converting enzyme (ACE) inhibitors are bioactive molecules with potential use in the treatment or prevention of hypertension, heart failure, and myocardial infarction. Here, the in vivo actions of the Kef-1 peptide, an ACE inhibitor derived from kefir, were evaluated in an angiotensin II-dependent hypertension model. The Kef-1 peptide showed a potential anti-hypertensive effect. Additionally, Kef-1 exhibited systemic antioxidant and anti-inflammatory activities. In smooth muscle cells (SMCs), the Kef-1 peptide decreased ROS production through the reduced participation of NADPH oxidase and mitochondria. The aorta of 2K1C mice treated with Kef-1 showed lesser wall-thickening and partial restoration of the endothelial structure. In conclusion, these novel findings highlight the in vivo biological potential of this peptide demonstrating that Kef-1 may be a relevant nutraceutical treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Amanda Pompermayer da Conceição
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Tadeu Ériton Caliman Zanardo
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Gabriel Henrique Taufner
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Breno Valentim Nogueira
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Silvana Dos Santos Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| |
Collapse
|
7
|
Festa J, Da Boit M, Hussain A, Singh H. Potential Benefits of Berry Anthocyanins on Vascular Function. Mol Nutr Food Res 2021; 65:e2100170. [PMID: 34346156 DOI: 10.1002/mnfr.202100170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD), such as hypertension and atherosclerosis, is the leading cause of global death. Endothelial dysfunction (ED) is a strong predictor for most CVD making it a therapeutic target for both drug and nutrition interventions. It has been previously shown that polyphenols from wine and grape extracts possess vasodilator activities, due to the increased expression and phosphorylation of the endothelial nitric oxide synthase (eNOS), and consequent vasodilator nitric oxide (NO) production. This is vital in the prevention of ED, as NO production contributes to the maintenance of endothelial homeostasis. Moreover, polyphenols have the ability to inhibit reactive oxygen species (ROS), which can cause oxidative stress, as well as suppress the upregulation of inflammatory markers within the endothelium. However, while the majority of the research has focused on red wine, this has overshadowed the potential of other nutritional components for targeting ED, such as the use of berries. Berries are high in anthocyanin flavonoids a subtype of polyphenols with studies suggesting improved vascular function as a result of inducing NO production and reducing oxidative stress and inflammation. This review focuses on the protective effects of berries within the vasculature.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| |
Collapse
|
8
|
D-(+)-Galactose-induced aging: A novel experimental model of erectile dysfunction. PLoS One 2021; 16:e0249487. [PMID: 33857158 PMCID: PMC8049229 DOI: 10.1371/journal.pone.0249487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Erectile dysfunction (ED) is defined as the inability to achieve and/or maintain penile erection sufficient for satisfactory sexual relations, and aging is one of the main risk factors involved. The D-(+)-Galactose aging model is a consolidated methodology for studies of cardiovascular aging; however, its potential for use with ED remain unexplored. The present study proposed to characterize a new experimental model for ED, using the D-(+)-Galactose aging model. For the experiments, the animals were randomly divided into three groups receiving: vehicle (CTL), D-galactose 150 mg/kg (DGAL), and D-(+)-galactose 150 mg/Kg + sildenafil 1.5 mg/Kg (DGAL+SD1.5) being administered daily for a period of eight weeks. All of the experimental protocols were previously approved by the Ethics Committee on the Use of Animals at the Federal University of Paraíba n° 9706070319. During the treatment, we analyzed physical, molecular, and physiological aspects related to the aging process and implicated in the development of ED. Our findings demonstrate for the first time that D-(+)-Galactose-induced aging represents a suitable experimental model for ED assessment. This was evidenced by an observed hyper-contractility in corpora cavernosa, significant endothelial dysfunction, increased ROS levels, an increase in cavernous tissue senescence, and the loss of essential penile erectile components.
Collapse
|
9
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
10
|
Attenuating Effects of Dieckol on Endothelial Cell Dysfunction via Modulation of Th17/Treg Balance in the Intestine and Aorta of Spontaneously Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10020298. [PMID: 33669285 PMCID: PMC7920082 DOI: 10.3390/antiox10020298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Disruptions of the Treg/Th17 cell balance and gut barrier function are associated with endothelial dysfunction. Dieckol (DK) obtained from Ecklonia cava and E. cava extract (ECE) decreases blood pressure by reducing inflammation; however, it has not been elucidated whether DK or ECE modulates the Treg/Th17 balance, changes the gut epithelial barrier, or decreases endothelial cell dysfunction. We evaluated the effects of ECE and DK on gut barrier and the Treg/Th17 balance in the intestine and aorta, with regard to endothelial dysfunction, using the spontaneously hypertensive rat (SHR) model. The level of Th17 cells increased and that of Treg cells decreased in the intestine of SHRs compared to normotensive Wistar Kyoto (WKY) rat. These changes were attenuated by ECE or DK treatment. Additionally, the serum IL-17A level increased in SHRs more than WKY; this was decreased by ECE or DK treatment. The level of Treg cells decreased and that of Th17 cells increased in the aorta of SHRs. These changes were attenuated by ECE or DK treatment. The NF-κB and IL-6 levels were increased in SHRs, but these changes were reversed by ECE or DK treatment. Endothelial cell dysfunction, which was evaluated using peNOS/eNOS, nitrate/nitrite ratio, and NADPH oxidase activity, increased in the aorta of SHRs, but was decreased by ECE or DK treatment. The Treg/Th17 balance in the intestine and aorta of SHRs was attenuated and endothelial cell dysfunction was attenuated through the Th17/NF-κB/IL-6 pathway by ECE or DK.
Collapse
|
11
|
Kodchakorn K, Viriyakhasem N, Wongwichai T, Kongtawelert P. Structural Determination, Biological Function, and Molecular Modelling Studies of Sulfoaildenafil Adulterated in Herbal Dietary Supplement. Molecules 2021; 26:949. [PMID: 33670094 PMCID: PMC7916901 DOI: 10.3390/molecules26040949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Unapproved ingredients included in herbal medicines and dietary supplements have been detected as adulterated synthetic drugs used for erectile dysfunction. Extraction from a dietary supplement was performed to isolate the compounds by HPLC analysis. The structural characterization was confirmed using mass spectrometry (ESI-TOF/MS and LC-MS/MS), 1H NMR, and 13C NMR spectroscopy techniques. Results identified the thus-obtained compound to be sulfoaildenafil, a thioketone analogue of sildenafil. The biological activities of this active compound have been focused for the first time by the experimental point of view performance in vitro. The results revealed that sulfoaildenafil can affect the therapeutic level of nitric oxide through the upregulation of nitric oxide synthase and phosphodiesterase type 5 (PDE5) gene expressions. This bulk material, which displays structural similarity to sildenafil, was analyzed for the presence of a PDE5 inhibitor using a theoretical calculation. These unique features of the potential activity of PDE5 protein and its inhibitors, sildenafil and sulfoaildenafil, may play a key consideration for understanding the mode of actions and predicting the biological activities of PDE5 inhibitors.
Collapse
Affiliation(s)
- Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (T.W.)
| | - Nawarat Viriyakhasem
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand;
| | - Tunchanok Wongwichai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (T.W.)
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (T.W.)
| |
Collapse
|
12
|
Blanco-Rivero J, Xavier FE. Therapeutic Potential of Phosphodiesterase Inhibitors for Endothelial Dysfunction- Related Diseases. Curr Pharm Des 2021; 26:3633-3651. [PMID: 32242780 DOI: 10.2174/1381612826666200403172736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases (CVD) are considered a major health problem worldwide, being the main cause of mortality in developing and developed countries. Endothelial dysfunction, characterized by a decline in nitric oxide production and/or bioavailability, increased oxidative stress, decreased prostacyclin levels, and a reduction of endothelium-derived hyperpolarizing factor is considered an important prognostic indicator of various CVD. Changes in cyclic nucleotides production and/ or signalling, such as guanosine 3', 5'-monophosphate (cGMP) and adenosine 3', 5'-monophosphate (cAMP), also accompany many vascular disorders that course with altered endothelial function. Phosphodiesterases (PDE) are metallophosphohydrolases that catalyse cAMP and cGMP hydrolysis, thereby terminating the cyclic nucleotide-dependent signalling. The development of drugs that selectively block the activity of specific PDE families remains of great interest to the research, clinical and pharmaceutical industries. In the present review, we will discuss the effects of PDE inhibitors on CVD related to altered endothelial function, such as atherosclerosis, diabetes mellitus, arterial hypertension, stroke, aging and cirrhosis. Multiple evidences suggest that PDEs inhibition represents an attractive medical approach for the treatment of endothelial dysfunction-related diseases. Selective PDE inhibitors, especially PDE3 and PDE5 inhibitors are proposed to increase vascular NO levels by increasing antioxidant status or endothelial nitric oxide synthase expression and activation and to improve the morphological architecture of the endothelial surface. Thereby, selective PDE inhibitors can improve the endothelial function in various CVD, increasing the evidence that these drugs are potential treatment strategies for vascular dysfunction and reinforcing their potential role as an adjuvant in the pharmacotherapy of CVD.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Fabiano E Xavier
- Departamento de Fisiologia e Farmacologia, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
13
|
Escudero DS, Brea MS, Caldiz CI, Amarillo ME, Aranda JO, Portiansky EL, Pérez NG, Díaz RG. PDE5 inhibition improves cardiac morphology and function in SHR by reducing NHE1 activity: Repurposing Sildenafil for the treatment of hypertensive cardiac hypertrophy. Eur J Pharmacol 2021; 891:173724. [PMID: 33152335 DOI: 10.1016/j.ejphar.2020.173724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/16/2023]
Abstract
Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway. Moreover, treated animals showed a decreased oxidative stress that appears to be a consequence of a decreased mitochondrial NHE1 phosphorylation. Treated SHR showed a significant reduction in the pro-hypertrophic phosphatase calcineurin, despite slight tendency to decrease hypertrophy was detected. When SIL treatment was prolonged to three months, a significant decrease in myocardial hypertrophy and interstitial fibrosis that correlated with a lower myocardial stiffness was observed. In conclusion, the current study provides evidence concerning the ability of SIL to revert established cardiac hypertrophy in SHR, a clinically relevant animal model that resembles human essential hypertension.
Collapse
Affiliation(s)
- Daiana S Escudero
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - María S Brea
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - María E Amarillo
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Jorge O Aranda
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
14
|
|
15
|
Vasquez EC, Aires R, Ton AMM, Amorim FG. New Insights on the Beneficial Effects of the Probiotic Kefir on Vascular Dysfunction in Cardiovascular and Neurodegenerative Diseases. Curr Pharm Des 2020; 26:3700-3710. [DOI: 10.2174/1381612826666200304145224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
The mechanisms responsible for cardiovascular and neurodegenerative diseases have been the focus of
experimental and clinical studies for decades. The relationship between the gut microbiota and the organs and
system tissues represents the research field that has generated the highest number of publications. Homeostasis of
the gut microbiota is important to the host because it promotes maturation of the autoimmune system, harmonic
integrative functions of the brain, and the normal function of organs related to cardiovascular and metabolic systems.
On the other hand, when a gut microbiota dysbiosis occurs, the target organs become vulnerable to the
onset or aggravation of complex chronic conditions, such as cardiovascular (e.g., arterial hypertension) and neurodegenerative
(e.g., dementia) diseases. In the present brief review, we discuss the main mechanisms involved in
those disturbances and the promising beneficial effects that have been revealed using functional food (nutraceuticals),
such as the traditional probiotic Kefir. Here, we highlight the current scientific advances, concerns, and
limitations about the use of this nutraceutical. The focus of our discussion is the endothelial dysfunction that
accompanies hypertension and the neurovascular dysfunction that characterizes ageing-related dementia in patients
suffering from Alzheimer's disease.
Collapse
Affiliation(s)
- Elisardo C. Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Rafaela Aires
- Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, ES, Brazil
| | - Alyne M. M. Ton
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Fernanda G. Amorim
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| |
Collapse
|
16
|
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020; 76:1055-1068. [PMID: 32829664 DOI: 10.1161/hypertensionaha.120.15856] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Keivan Golshiri
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Annika Jüttner
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Guido Krenning
- Sulfateq B.V., Groningen, the Netherlands (G.K.).,Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands (G.K.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| |
Collapse
|