1
|
Rashid M, Hayat MH, Zahra N, Khan MS, Suleman, Nadeem M, Rehman TU, Ehsan M, Malik MI, Obaid MK, Bakhsh A, Darghouth MA, Ren Q. Systematic review on buparvaquone resistance associated with non-synonymous mutation in drug binding genes site of Theileria annulate. Vet Parasitol 2024; 332:110321. [PMID: 39418760 DOI: 10.1016/j.vetpar.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Theileria annulata (T. annulata) is intra-erythrocytic protozoan parasite which is more prevalent in tropical and sub-tropical countries. It has a significant economic impact on the productivity of the dairy industry, and buparvaquone is used to treat infected animals in the prevalent regions of the world. Systematically, buparvaquone targets the cyto-b gene to break the electron transport chain (ETC) and Theileria annulata peptidyl-prolyl isomerase 1 (TaPIN1) gene to destabilize transcription factor JUN (c-JUN) to inhibit proliferation of infected cells, which ultimately leads to the death of T. annulata. The reported studies on drug resistance is due to inappropriate drug application, evolutionary characteristics of the cytochrome b (cyto-b) gene and oncogenic signaling pathways gene (TaPIN1) make the parasite resistant against buparvaquone. Hence, this systematic review was designed to find out non-synonymous mutation in genes (cyto-b and TaPIN1) responsible for drug resistance reported from Tunisia, Turkey, Egypt, Sudan, Iran, Pakistan, China and Germany with reference to the T. annulata Ankara strain of cyto-b (accession no. XM_949625.1) and TaPIN1 (accession no. TA18945) wild type genes. Non-synonymous point mutations were found in cyto-b (Q01 at 130-148 and Q02 at 253-262 regions) and TaPIN1 (A53P and A53T) genes. These point mutations are responsible for developing buparvaquone resistance against T. annulata infection. These genes can be used as biomarkers for the identification of drug resistance in any endemic area. To avoid the complication of drug resistance, development of genetically resistant cattle breeds, potent vaccines and anti-theilerial drugs (Trifloxystrobin and anti-cancerous) are currently required to control proliferating economically important T. annulata parasites.
Collapse
Affiliation(s)
- Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Naveed Zahra
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Suleman
- Department of Zoology, University of Swabi, Pakistan; Department of Zoology, Government Post Graduate College, Dargai 23060, Malakand, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Nadeem
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Tauseef Ur Rehman
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Ehsan
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Kashif Obaid
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China.
| | - Amir Bakhsh
- Livestock and Dairy Development Department, Government of Punjab, Punjab, Pakistan.
| | - Mohamed Aziz Darghouth
- Ecole Nationale de Médecine Vétérinaire", Laboratory of Parasitology, Sidi Thabet, Ariana 2020, Tunisia.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China.
| |
Collapse
|
2
|
Silva MG, Bastos RG, Stone Doggett J, Riscoe MK, Pou S, Winter R, Dodean RA, Nilsen A, Suarez CE. Endochin-like quinolone-300 and ELQ-316 inhibit Babesia bovis, B. bigemina, B. caballi and Theileria equi. Parasit Vectors 2020; 13:606. [PMID: 33272316 PMCID: PMC7712603 DOI: 10.1186/s13071-020-04487-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. Methods The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. Results We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. Conclusions The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis. ![]()
Collapse
Affiliation(s)
- Marta G Silva
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - J Stone Doggett
- Oregon Health and Science University, 3181 SW Sam Jackson Blvd., Portland, Oregon, 97239, USA
| | - Michael K Riscoe
- Oregon Health and Science University, 3181 SW Sam Jackson Blvd., Portland, Oregon, 97239, USA
| | - Sovitj Pou
- VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Rolf Winter
- VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Rozalia A Dodean
- VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Aaron Nilsen
- Oregon Health and Science University, 3181 SW Sam Jackson Blvd., Portland, Oregon, 97239, USA.,VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA. .,Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, USA.
| |
Collapse
|