1
|
Meng Z, Zhai L, Guo Y, Zheng M, Li L, Wen C, Zhang W, Di W. Secondary infection of Fasciola gigantica in buffaloes shows a similar pattern of serum cytokine secretion as in primary infection. Front Vet Sci 2023; 10:1109947. [PMID: 37152685 PMCID: PMC10157221 DOI: 10.3389/fvets.2023.1109947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Background As a natural host of Fasciola gigantica, buffalo is widely infected by F. gigantica. Its impact on buffalo production has caused great losses to the husbandry sector, and repeat infection is non-negligible. In buffaloes experimentally infected with F. gigantica, primary and secondary infection have yielded the same rate of fluke recovery, indicating a high susceptibility of buffalo to F. gigantica, which contributes to the high infection rate. Determining the immunological mechanism of susceptibility will deepen the understanding of the interaction between F. gigantica and buffalo. Here, we explored the immune response of buffaloes against primary and secondary F. gigantica infection, with a focus on cytokines' dynamics explored through serum cytokine detection. Methods Buffaloes were assigned to three groups: group A (noninfected, n = 4), group B (primary infection, n = 3), and group C (secondary infection, n = 3). Group B was infected via oral gavage with 250 viable F. gigantica metacercariae, and group C was infected twice with 250 metacercariae at an interval of 4 weeks. The second infection of group C was performed simultaneously with that of group B. Whole blood samples were collected pre-infection (0 weeks) and at 1-6, 10, and 12 weeks after that. The serum levels of seven cytokines (IFN-γ, IL-4, IL-5, IL-10, IL-13, TGF-β, and IL-17) were simultaneously determined using ELISA and further analyzed. Results In the present study, no significant changes in Th1-type cytokines production were detected in early infection, both in primary and secondary infections, while the Th2-type response was strongly induced. A comparison of primary and secondary infection showed no significant difference in the cytokine secretion, which may indicate that the re-infection at 4 weeks after primary infection could not induce a robust adaptive immune response. The full extent of interaction between buffalo and F. gigantica in re-infection requires further study.
Collapse
Affiliation(s)
- Zhen Meng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Lele Zhai
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Liang Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Chongli Wen
- Guangxi Buffalo Research Institute, Chinese Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Weiyu Zhang,
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
- Wenda Di,
| |
Collapse
|
2
|
Zerna G, Spithill TW, Beddoe T. Current Status for Controlling the Overlooked Caprine Fasciolosis. Animals (Basel) 2021; 11:1819. [PMID: 34207215 PMCID: PMC8235714 DOI: 10.3390/ani11061819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
The disease fasciolosis is caused by the liver flukes Fasciola hepatica and F. gigantica, which infect a wide range of mammals and production livestock, including goats. These flatworm parasites are globally distributed and predicted to cost the livestock industry a now conservative USD 3 billion per year in treatment and lowered on-farm productivity. Infection poses a risk to animal welfare and results in lowered fertility rates and reduced production yields of meat, milk and wool. This zoonotic disease is estimated to infect over 600 million animals and up to 2.4 million humans. Current and future control is threatened with the global emergence of flukes resistant to anthelmintics. Drug resistance calls for immediate on-farm parasite management to ensure treatments are effective and re-infection rates are kept low, while a sustainable long-term control method, such as a vaccine, is being developed. Despite the recent expansion of the goat industry, particularly in developing countries, there are limited studies on goat-focused vaccine control studies and the effectiveness of drug treatments. There is a requirement to collate caprine-specific fasciolosis knowledge. This review will present the current status of liver fluke caprine infections and potential control methods for application in goat farming.
Collapse
Affiliation(s)
| | | | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia; (G.Z.); (T.W.S.)
| |
Collapse
|