1
|
Conway AE, Greenhawt M, Abrams EM, Shaker MS. Food allergy prevention through the decades: An ounce of humility is worth a pound of cure. JOURNAL OF FOOD ALLERGY 2024; 6:3-14. [PMID: 39257599 PMCID: PMC11382770 DOI: 10.2500/jfa.2024.6.230018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Food allergy prevention has undergone a significant transformation over the past 3 decades. This review provides an overview of the evolution of food allergy prevention, highlighting changes in guidance, cost-effectiveness of prevention, the role of shared decision-making, and the emergence of oral immunotherapy for those in whom primary prevention fails. Changes to food allergy prevention over recent decades can be conceptualized into five epochs, which have followed a general trend of loosening restrictions on the allergen introduction timeline. These epochs are characterized by significant maternal and infant dietary restrictions in the "universal avoidance epoch"(-1990), loosened maternal diet restrictions in the "infant avoidance epoch" (1990-2000), a time-bound allergen introduction schedule in the "stratified avoidance epoch" (2000-2010), retraction of recommendations in the "corrective retraction epoch" (2010-2015), and endorsement of early allergen introduction in the "early introduction epoch" (2015-present), the start of which is marked by the 2015 Learning Early About Peanut study. In hindsight, it is clear that certain recommendations from previous decades were not the best course of action. A no-screening early introduction approach to food allergy prevention is both cost-effective and beneficial to patient quality of life.
Collapse
Affiliation(s)
| | - Matthew Greenhawt
- Section of Allergy and Clinical Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Elissa M Abrams
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Marcus S Shaker
- From the Dartmouth Geisel School of Medicine, Hanover, New Hampshire
- Section of Allergy and Immunology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
2
|
Bosco A, Altea V, Beretta P, Cacace R, Fanos V, Dessì A. Metabolomics in Children Cow's Milk Protein Allergy: Possible Contribution from a System Biology Approach? CHILDREN (BASEL, SWITZERLAND) 2024; 11:562. [PMID: 38790557 PMCID: PMC11120097 DOI: 10.3390/children11050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
One of the most frequent triggers of food anaphylaxis in pediatric age but also among the most common, early, and complex causes of childhood food allergy is cow's milk protein allergy (CMPA). The diagnostic course and management of this allergy is defined in a complex clinical picture due to several factors. First of all, the epidemiological data are not uniform, mainly as a consequence of the diagnostic methodology used in the various studies and the different age ranges covered. In addition, there is the complexity of terminology, since although CMPA traditionally refers to immune-mediated reactions to cow's milk, it is a term encompassing numerous clinical features with different symptoms and the requirement for specific treatments. Moreover, the differential diagnosis with other very frequent diseases, especially in the first year of life, such as gastro-esophageal reflux disease or colic, is still complex. This can result in misdiagnosis and incorrect treatment, with harmful health consequences and significant economic repercussions. In this context, the combination of several omics sciences together, which have already proved useful in clarifying the allergenicity of cow's milk proteins with greater precision, could improve the diagnostic tests currently in use through the identification of new, more specific, and precise biomarkers that make it possible to improve diagnostic accuracy and predict the patient's response to the various available treatments for the recovery of tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, 09124 Cagliari, Italy; (A.B.); (V.A.); (P.B.); (R.C.); (A.D.)
| | | |
Collapse
|
3
|
Zubeldia-Varela E, Ibáñez-Sandín MD, Gomez-Casado C, Pérez-Gordo M. Allergy-associated biomarkers in early life identified by Omics techniques. FRONTIERS IN ALLERGY 2024; 5:1359142. [PMID: 38464396 PMCID: PMC10920277 DOI: 10.3389/falgy.2024.1359142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The prevalence and severity of allergic diseases have increased over the last 30 years. Understanding the mechanisms responsible for these diseases is a major challenge in current allergology, as it is crucial for the transition towards precision medicine, which encompasses predictive, preventive, and personalized strategies. The urge to identify predictive biomarkers of allergy at early stages of life is crucial, especially in the context of major allergic diseases such as food allergy and atopic dermatitis. Identifying these biomarkers could enhance our understanding of the immature immune responses, improve allergy handling at early ages and pave the way for preventive and therapeutic approaches. This minireview aims to explore the relevance of three biomarker categories (proteome, microbiome, and metabolome) in early life. First, levels of some proteins emerge as potential indicators of mucosal health and metabolic status in certain allergic diseases. Second, bacterial taxonomy provides insight into the composition of the microbiota through high-throughput sequencing methods. Finally, metabolites, representing the end products of bacterial and host metabolic activity, serve as early indicators of changes in microbiota and host metabolism. This information could help to develop an extensive identification of biomarkers in AD and FA and their potential in translational personalized medicine in early life.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina. Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, H. Infantil Universitario Niño Jesús, FibHNJ, ARADyAL- RETICs Instituto de Salud Carlos III, IIS-P, Madrid, Spain
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Marina Pérez-Gordo
- Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina. Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
4
|
Gallizzi AA, Heinken A, Guéant-Rodriguez RM, Guéant JL, Safar R. A systematic review and meta-analysis of proteomic and metabolomic alterations in anaphylaxis reactions. Front Immunol 2024; 15:1328212. [PMID: 38384462 PMCID: PMC10879545 DOI: 10.3389/fimmu.2024.1328212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
Background Anaphylaxis manifests as a severe immediate-type hypersensitivity reaction initiated through the immunological activation of target B-cells by allergens, leading to the release of mediators. However, the well-known underlying pathological mechanisms do not fully explain the whole variety of clinical and immunological presentations. We performed a systemic review of proteomic and metabolomic studies and analyzed the extracted data to improve our understanding and identify potential new biomarkers of anaphylaxis. Methods Proteomic and metabolomic studies in both human subjects and experimental models were extracted and selected through a systematic search conducted on databases such as PubMed, Scopus, and Web of Science, up to May 2023. Results Of 137 retrieved publications, we considered 12 for further analysis, including seven on proteome analysis and five on metabolome analysis. A meta-analysis of the four human studies identified 118 proteins with varying expression levels in at least two studies. Beside established pathways of mast cells and basophil activation, functional analysis of proteomic data revealed a significant enrichment of biological processes related to neutrophil activation and platelet degranulation and metabolic pathways of arachidonic acid and icosatetraenoic acid. The pathway analysis highlighted also the involvement of neutrophil degranulation, and platelet activation. Metabolome analysis across different models showed 13 common metabolites, including arachidonic acid, tryptophan and lysoPC(18:0) lysophosphatidylcholines. Conclusion Our review highlights the underestimated role of neutrophils and platelets in the pathological mechanisms of anaphylactic reactions. These findings, derived from a limited number of publications, necessitate confirmation through human studies with larger sample sizes and could contribute to the development of new biomarkers for anaphylaxis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024506246.
Collapse
Affiliation(s)
- Adrienne Astrid Gallizzi
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Almut Heinken
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Zhong H, Li J, Cheng JH. Targeting different signaling pathways for food allergy regulation and potential therapy: a review. Crit Rev Food Sci Nutr 2023; 64:12860-12877. [PMID: 37707435 DOI: 10.1080/10408398.2023.2257798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rising incidence rate of food allergy is attracting more intention. The pathogenesis of food allergy is complex and its definite regulatory mechanism is not utterly understood. Exploring the molecular mechanism of food allergy to help find effective methods that can prevent or treat food allergy is widely necessary. Recently, targeting cellular signaling pathways have been employed as novel approaches to discover food allergy therapy. Supplementing probiotics and bioactive compounds with anti-allergic property are believed feasible approaches for food allergy therapy. These probiotics or bioactive compounds affect food allergy by regulating cellular signaling pathways, and ultimately alleviate food allergy. This review aims to report systematic information about the knowledge of signaling pathways participated in food allergy, the alterations of these signaling pathways during food allergy that treated with probiotics and bioactive compounds are discussed as well. Further studies on the mechanism of signaling pathway network regulating food allergy and the precise action mechanism of probiotics and bioactive compounds are in the urgent need to help develop efficient treatment or complete prevention. We hope to help scientists understand food allergy systematically.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
6
|
Coppola S, Carucci L, Oglio F, Di Sarra C, Ozen G, Berni Canani R. Nutritional Strategies for the Prevention and Management of Cow's Milk Allergy in the Pediatric Age. Nutrients 2023; 15:3328. [PMID: 37571266 PMCID: PMC10421120 DOI: 10.3390/nu15153328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Cow's milk allergy (CMA) is one of the most common pediatric food allergies. The prevalence and severity of CMA have increased dramatically in the last decades, under the pressure of environmental factors in genetically predisposed individuals. Among the environmental influences, nutritional factors play a crucial role. Diet is the most modifiable factor, representing a potential target for the prevention and treatment of CMA. In this review, we report the most scientific-based nutritional strategies for preventing and managing pediatric CMA. In addition, we propose the most complete supplement of compounds able to prevent nutrient deficiencies in CMA pediatric patients and to positively influence the disease course.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia Di Sarra
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Gulsum Ozen
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, 80131 Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|