1
|
Huang JY, Li HJ, Li LX, Chen R, Liu F, Wu L, Feng ZM, Yin YL, Cao Z, Yu D. Sensitive detection of H 2S based on Ce doped ZnCo 2O 4 hollow microspheres at low working temperature. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4644-4652. [PMID: 38946403 DOI: 10.1039/d4ay00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In order to develop a highly efficient H2S gas sensor at low working temperature, in this work, a kind of novel Ce-doped ZnCo2O4 hollow microspheres (Ce/ZnCo2O4 HMSs) were successfully synthesized using a template-free one-pot method, showing a sensitive response toward H2S. The microstructure and morphology of the material were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas-sensing performance of the composite was investigated, showing that the ZnCo2O4 doped with 6 mol% Ce had the highest response to 20 ppm H2S at a low operating temperature of 160 °C with a response value of 67.42, which was about 2 times higher than that of original ZnCo2O4. The prepared Ce/ZnCo2O4 HMS sensor in response to H2S exhibited a linear range of 0.1-200 ppm with a low detection limit of 0.1 ppm under the conditions of ambient humidity of 45% and ambient temperature of 20 °C. Meanwhile, it also possessed good selectivity, repeatability and reproducibility. The response value of the sensor decreased by 5.32% after 7 months of continuous monitoring of H2S in an atmospheric environment of a pig farm, indicating that the sensor had a long-term stability and continuous service life with important application prospects.
Collapse
Affiliation(s)
- Jia-Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Hao-Jun Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Lin-Xuan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Rong Chen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Fang Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ze-Meng Feng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark.
| |
Collapse
|
2
|
Zhang J, Li X, Qian A, Xu X, Lv Y, Zhou X, Yang X, Zhu W, Zhang H, Ding Y. Effects of operating conditions on the in situ control of sulfur-containing odors by using a novel alternative landfill cover and its transformation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7959-7976. [PMID: 38175505 DOI: 10.1007/s11356-023-31721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sulfur-containing gases are main sources of landfill odors, which has become a big issue for pollution to environment and human health. Biocover is promising for treating landfill odors, with advantages of durability and environmental friendliness. In this study, charcoal sludge compost was utilized as the main effective component of a novel alternative landfill cover and the in situ control of sulfur-containing odors from municipal solid waste landfilling process was simulated under nine different operating conditions. Results showed that five sulfur-containing odors (hydrogen sulfide, H2S; methyl mercaptan, CH3SH; dimethyl sulfide, CH3SCH3; ethylmercaptan, CH3CH2SH; carbon disulfide, CS2) were monitored and removed by the biocover, with the highest removal efficiencies of 77.18% for H2S, 87.36% for CH3SH, and 92.19% for CH3SCH3 in reactor 8#, and 95.94% for CH3CH2SH and 94.44% for CS2 in reactor 3#. The orthogonal experiment showed that the factors influencing the removal efficiencies of sulfur-containing odors were ranked from high to low as follows: temperature > weight ratio > humidity content. The combination of parameters of 20% weight ratio, 25°C temperature, and 30% water content was more recommended based on the consideration of the removal efficiencies and economic benefits. The mechanisms of sulfur conversion inside biocover were analyzed. Most organic sulfur was firstly degraded to reduced sulfides or element sulfur, and then oxidized to sulfate which could be stable in the layer as the final state. In this process, sulfur-oxidizing bacteria play a great role, and the distribution of them in reactor 1#, 5#, and 8# was specifically monitored. Bradyrhizobiaceae and Rhodospirillaceae were the dominant species which can utilize sulfide as substance to produce sulfate and element sulfur, respectively. Based on the results of OUTs, the biodiversity of these sulfur-oxidizing bacteria, these microorganisms, was demonstrated to be affected by the different parameters. These results indicate that the novel alternative landfill cover modified with bamboo charcoal compost is effective in removing sulfur odors from landfills. Meanwhile, the findings have direct implications for addressing landfill odor problems through parameter adjustment.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaowen Li
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Aiai Qian
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xianwen Xu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ya Lv
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrong Zhou
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrui Yang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weiqin Zhu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Hangjun Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ying Ding
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
3
|
Pallewatta S, Weerasooriyagedara M, Bordoloi S, Sarmah AK, Vithanage M. Reprocessed construction and demolition waste as an adsorbent: An appraisal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163340. [PMID: 37084906 DOI: 10.1016/j.scitotenv.2023.163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Construction and Demolition (C&D) waste is solid wastes generated from the construction, demolition, and renovation activities that constitute almost 30-40 % of globally generated solid wastes. Improper disposal and management of these materials can cause negative impacts on the environment, economy, and human health. Most research on C&D waste is limited to reduction, recycling, and reuse of the wastes. However, there is no systematic review dedicated entirely to the applicability of C&D wastes as adsorbent for waste management. This review presents the utilization of C&D wastes-based adsorbents for removing contaminants from environmental matrices covering triple edge benefits in the viewpoints of waste treatment, solid waste management, and disposal. The properties, the capability of C&D waste adsorbents on contaminant removal, and the influence of various factors on the adsorptive removal is detailed. Further, the mechanisms involved in contaminant removal by C&D waste are summarized. The review revealed that, chemisorption is the prominent mechanism of contaminant removal by most C&D wastes. Among the three types of C&D waste reviewed; concrete-based adsorbents were the most efficient for contaminant removal. Limited studies are avaiable in the literature on binary and multiple contaminant systems, reusability studies, and high dependence on solution pH, therefore further studies are warrated. As C&D waste contain trace concentration of heavy metals and contaminants, its leaching potential at different pH levels and adsorbate concentration need to be conducted, which has been hitherto neglected. Finally, the approaches, obstacles, and potential solutions to build an industrially and economically efficient C&D adsorbent are discussed.
Collapse
Affiliation(s)
- Shiran Pallewatta
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Madara Weerasooriyagedara
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sanandam Bordoloi
- Illinois Sustainable Technology Center, University of Illinois at Urbana Champaign, Champaign-, United States of America
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, The University of Western Australia, Perth WA6009, Australia.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; The Institute of Agriculture, The University of Western Australia, Perth WA6009, Australia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
4
|
Jiang K, Cheng Z, Lou Z, Wang L, Lu H, Xu B, Jin N. Chemical and olfactive impacts of organic matters on odor emission patterns from the simulated construction and demolition waste landfills. J Environ Sci (China) 2021; 103:196-206. [PMID: 33743901 DOI: 10.1016/j.jes.2020.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The explosive increase of construction and demolition waste (CDW) caused the insufficient source separation and emergency disposal at domestic waste landfills in many developing countries. Some organic fractions were introduced to the CDW landfill process and resulted in serious odor pollution. To comprehensively explore the impacts of organic matters on odor emission patterns, five CDW landfills (OIL), with organic matters/ inert CDW components (O/I) from 5% to 30%, and the control group only with inert components (IL) or organics (OL) were simulated at the laboratory. The chemical and olfactive characters of odors were evaluated using the emission rate of 94 odorants content (ERtotal), theory odor concentration (TOCtotal), and e-nose concentration (ERENC), and their correlations with waste properties were also analyzed. It was found that the main contributors to ERtotal (IL: 93.0% NH3; OIL: 41.6% sulfides, 31.0% NH3, 25.9% oxygenated compounds) and TOCtotal (IL: 64.1% CH3SH, 28.2% NH3; OIL: 71.7% CH3SH, 24.8% H2S) changed significantly. With the rise of O/I, ERtotal, TOCtotal, and ERENC increased by 10.9, 20.6, and 2.1 times, respectively. And the organics content in CDW should be less than 10% (i.e., DOC<101.3 mg/L). The good regressions between waste properties (DOC, DN, pH) and ERENC- (r=0.86, 0.86, -0.88, p<0.05), TOCtotal- (r=0.82, 0.79, -0.82, p<0.05) implied that the carbon sources and acidic substances relating to organics degradation might result in that increase. Besides, the correlation analysis results (ERENC-vs.TOCtotal-, r=0.96, p<0.01; vs.ERtotal-, r=0.86, p<0.05) indicated that e-nose perhaps was a reliable odor continuous monitoring tool for CDW landfills.
Collapse
Affiliation(s)
- Kunyu Jiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhaowen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200092, China; Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Luochun Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Hailin Lu
- Shanghai Environment Group co., Ltd, Shanghai 200336, China
| | - Bijun Xu
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200001, China
| | - Ningben Jin
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200001, China
| |
Collapse
|
5
|
The Influence of Waste Composition on Landfill Gas Generation in a Pilot-Scale Lysimeter. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Sudokwon landfill site in Korea, is one of the largest landfill sites in the world, and consists of a first landfill site and second landfill site. The second landfill site generates 3–30 times more H2S than that of the first landfill site. However, the cause of the increase in H2S has not been identified. In this study, the main causes of H2S concentration increase were investigated in the second landfill site in the Sudokwon landfill site. We classified wastes at the Sudokwon landfill site into seven types including Construction and demolition (C&D) debris waste. A lysimeter reactor was designed as a similar environment to the Sudokwon landfill site for simulation. In addition, the experiment was conducted under the same conditions. Three components and elements were analyzed to identify the composition of waste in the landfill site. Leachate was analyzed through a chemical oxygen demand and SO42− standard method. For landfill gas, a gas analyzer was used. The trend in the generation of leachate and landfill gas depending on waste composition at the landfill site was observed and the cause of the increase in H2S was examined. As a result, landfilling of C&D debris waste is recommended as a single landfill.
Collapse
|
6
|
Ying L, Long Y, Yao L, Liu W, Hu L, Fang C, Shen D. Sulfate reduction at micro-aerobic solid-liquid interface in landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:545-551. [PMID: 30833253 DOI: 10.1016/j.scitotenv.2019.02.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
H2S can be produced under aerobic conditions, which goes against the traditional view of an obligatory anaerobic metabolism process. In this research, the sulfate-reduction behavior at the micro-aerobic solid-liquid interface in a landfill was investigated. H2S emission from mineralized waste from the landfill material could be enhanced when exposed to O2. The highest H2S concentration of 56.54 mg·m-3, observed at an O2 concentration of 2%, was 4.5 times higher than the highest concentration of H2S recorded under anaerobic conditions. The presence of leachate influenced protection of the anaerobic sulfate-reducing bacteria against O2, allowing the bacteria to survive and even undergo significant sulfate reduction under micro-aerobic conditions. The sulfate concentration could be maintained at a high level because of possible oxidation-reduction cycling under micro-aerobic conditions and the risk of H2S emission was always high. This research provides a theoretical basis for controlling the release of H2S within landfills.
Collapse
Affiliation(s)
- Luyao Ying
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Lihua Yao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Weijia Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lifang Hu
- School of Quality and Safety, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
7
|
Habeeb OA, Kanthasamy R, Ali GA, Sethupathi S, Yunus RBM. Hydrogen sulfide emission sources, regulations, and removal techniques: a review. REV CHEM ENG 2017. [DOI: 10.1515/revce-2017-0004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
This review highlights the recent technologies of H2S removal from wastewater in the petroleum refinery. H2S is a harmful, putrid, and hazardous gaseous compound. The main processes such as physicochemical, chemical, biological, and electrochemical methods were compared and discussed in detail. The effects of various parameters and adsorbent characteristics were highlighted and correlated with the adsorption capacities. Surface functional groups and porosity surface area play a crucial role in the process of single-phase and composite adsorbents. Composite materials impregnated with some metals showed high removal efficiencies. It was found that the adsorption process is the most relevant way for H2S removal due to its high removal efficiency, low cost, eco-friendly, and operational simplicity. This study serves as a useful guideline for those who are interested in H2S removal.
Collapse
Affiliation(s)
- Omar Abed Habeeb
- Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
| | - Ramesh Kanthasamy
- Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
| | - Gomaa A.M. Ali
- Faculty of Industrial Sciences and Technology , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
- Chemistry Department , Faculty of Science, Al-Azhar University , Assiut 71524 , Egypt
- Al-Azhar Center of Nanoscience and Applications (ACNA) , Al-Azhar University , Assiut 71524 , Egypt
| | - Sumathi Sethupathi
- Department of Environmental Engineering , Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman , 31900 Perak , Malaysia
| | - Rosli Bin Mohd Yunus
- Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
| |
Collapse
|
8
|
Sun M, Sun W, Barlaz MA. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:23-31. [PMID: 26874757 DOI: 10.1016/j.scitotenv.2016.01.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes.
Collapse
Affiliation(s)
- Mei Sun
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC, USA.
| | - Wenjie Sun
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC, USA; Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX, USA.
| | - Morton A Barlaz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC, USA.
| |
Collapse
|