1
|
Guarda EC, Galinha CF, Duque AF, Reis MAM. Non-invasive and real-time monitoring of polyhydroxyalkanoates production using two-dimensional fluorescence spectroscopy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122545. [PMID: 39305872 DOI: 10.1016/j.jenvman.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Bioplastics are a sustainable and environmental-friendly alternative to the conventional petroleum-based plastics, namely due to their source (biobased) and due to their biodegradability or both. Polyhydroxyalkanoates (PHA) stand out among the bioplastics group by being intracellular biobased, biodegradable and biocompatible polymers. PHA production has been highly investigated during the last decades. However, to date, PHA production has been monitored through offline and time-consuming tools, involving hazardous solvents, not allowing a timely control of the bioprocesses, which often results in a loss of process productivity and hinders its implementation at full scale. Therefore, two-dimensional (2D) fluorescence spectroscopy was assessed for monitoring the PHA content at real-time, as it is a non-destructive, solvent-free and non-invasive technique. The complex information of the biological broth was captured within fluorescence excitation-emission matrices (EEMs), which were deconvoluted through projection to latent structures (PLS) modelling to estimate PHA production by an enriched PHA microbial culture, using fermented brewer's spent grain as feedstock. A good correlation for PHA prediction was achieved, with an average error of ca. 4.0% gPHA/gTS for new predictions. This work demonstrates the great potential of using 2D fluorescence spectroscopy to assess the intracellular PHA content without requiring staining agents. Moreover, it unlocks the possibility of an online and real-time monitoring of the biopolymer production processes, which will contribute towards the improvement of the PHA process productivity and, consequently, its implementation at full scale.
Collapse
Affiliation(s)
- Eliana C Guarda
- Associate Laboratory I4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Claudia F Galinha
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| | - Anouk F Duque
- Associate Laboratory I4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria A M Reis
- Associate Laboratory I4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
2
|
Laursen SF, Flint CA, Bahrndorff S, Tomberlin JK, Kristensen TN. Reproductive output and other adult life-history traits of black soldier flies grown on different organic waste and by-products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:136-144. [PMID: 38608528 DOI: 10.1016/j.wasman.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The interest in mass-rearing black soldier fly (Hermetia illucens) larvae for food and feed is rapidly increasing. This is partly sparked by the ability of the larvae to efficiently valorise a wide range of organic waste and by-products. Primarily, research has focused on the larval stage, hence underprioritizing aspects of the adult biology, and knowledge on reproduction-related traits such as egg production is needed. We investigated the impact of different organic waste and by-products as larval diets on various life-history traits of adult black soldier flies in a large-scale experimental setup. We reared larvae on four different diets: spent Brewer's grain, ground carrots, Gainesville diet, and ground oranges. Traits assessed were development time to pupa and adult life-stages, adult body mass, female lifespan, egg production, and egg hatch. Larval diet significantly impacted development time to pupa and adult, lifespan, body size, and egg production. In general, flies reared on Brewer's grain developed up to 4.7 d faster, lived up to 2.3 d longer, and produced up to 57% more eggs compared to flies reared on oranges on which they performed worst for these traits. There was no effect of diet type on egg hatch, suggesting that low-nutritious diets, i.e. carrots and oranges, do not reduce the quality but merely the quantity of eggs. Our results demonstrate the importance of larval diet on reproductive output and other adult traits, all important for an efficient valorisation of organic waste and by-products, which is important for a sustainable insect-based food and feed production.
Collapse
Affiliation(s)
- Stine Frey Laursen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.
| | - Casey A Flint
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| |
Collapse
|
3
|
Hackula A, O’Shea R, Murphy JD, Wall DM. Design, Construction, and Concept Validation of a Laboratory-Scale Two-phase Reactor to Valorize Whiskey Distillery By-products. ACS ENGINEERING AU 2023; 3:224-234. [PMID: 37601416 PMCID: PMC10436281 DOI: 10.1021/acsengineeringau.3c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 08/22/2023]
Abstract
The by-products generated from the whiskey distillation process consist of organic liquids with a high chemical oxygen demand (COD) and residues with a high solid content. Low-carbon strategies that repurpose and valorize such by-products are now imperative to reduce the carbon footprint of the food and beverage industries. The operation of a two-phase anaerobic digester to produce volatile fatty acids (VFAs) and biogas may enable distilleries to transition toward a low-carbon bioeconomy. An example of such a system is a leach bed reactor connected to an expanded granular sludge bed (LBR-EGSB) which was designed, commissioned, and conceptually validated in this paper. Several design improvements progress the LBR-EGSB beyond previous reactor designs. An external gas-liquid-solid separator in the EGSB was used to capture any residual gases produced by the effluent and may reduce the amount of methane slippage and biomass washout. The implementation of a siphon-actuated leachate cup is a low-cost alternative that is less prone to actuation malfunction as compared to electrically actuated solenoid valves in previous reactor designs. Furthermore, replacing fresh water with distillery's liquid by-products as leachate promotes a circular repurpose and reuse philosophy. The system proved to be effective in generating VFAs (10.3 g VFAs L-1Leachate), in EGSB COD removal (96%), and in producing methane-rich biogas (75%vol), which is higher than the values achieved by traditional anaerobic digestion systems. The LBR-EGSB could ultimately provide more by-product valorization and decarbonization opportunities than traditional anaerobic digestion systems for a whiskey distillery.
Collapse
Affiliation(s)
- Anga Hackula
- SFI
MaREI Centre for Energy, Climate and Marine, Environmental Research
Institute, University College Cork, College Road, Cork T23 XE10, Ireland
- Civil,
Structural and Environmental Engineering, School of Engineering and
Architecture, University College Cork, College Road, Cork T12 K8AF, Ireland
| | - Richard O’Shea
- SFI
MaREI Centre for Energy, Climate and Marine, Environmental Research
Institute, University College Cork, College Road, Cork T23 XE10, Ireland
- Civil,
Structural and Environmental Engineering, School of Engineering and
Architecture, University College Cork, College Road, Cork T12 K8AF, Ireland
| | - Jerry D. Murphy
- SFI
MaREI Centre for Energy, Climate and Marine, Environmental Research
Institute, University College Cork, College Road, Cork T23 XE10, Ireland
- Civil,
Structural and Environmental Engineering, School of Engineering and
Architecture, University College Cork, College Road, Cork T12 K8AF, Ireland
| | - David M. Wall
- SFI
MaREI Centre for Energy, Climate and Marine, Environmental Research
Institute, University College Cork, College Road, Cork T23 XE10, Ireland
- Civil,
Structural and Environmental Engineering, School of Engineering and
Architecture, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
4
|
Chetrariu A, Dabija A. Spent Grain: A Functional Ingredient for Food Applications. Foods 2023; 12:foods12071533. [PMID: 37048354 PMCID: PMC10094003 DOI: 10.3390/foods12071533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Spent grain is the solid fraction remaining after wort removal. It is nutritionally rich, composed of fibers—mainly hemicellulose, cellulose, and lignin—proteins, lipids, vitamins, and minerals, and must be managed properly. Spent grain is a by-product with high moisture, high protein and high fiber content and is susceptible to microbial contamination; thus, a suitable, cost-effective, and environmentally friendly valorization method of processing it is required. This by-product is used as a raw material in the production of many other food products—bakery products, pasta, cookies, muffins, wafers, snacks, yogurt or plant-based yogurt alternatives, Frankfurter sausages or fruit beverages—due to its nutritional values. The circular economy is built on waste reduction and the reuse of by-products, which find opportunities in the regeneration and recycling of waste materials and energy that become inputs in other processes and food products. Waste disposal in the food industry has become a major issue in recent years when attempting to maintain hygiene standards and avoid soil, air and water contamination. Fortifying food products with spent grain follows the precepts of the circular bio-economy and industrial symbiosis of strengthening sustainable development. The purpose of this review is to update information on the addition of spent grain to various foods and the influence of spent grain on these foods.
Collapse
Affiliation(s)
- Ancuța Chetrariu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
5
|
Blidi S, Troise AD, Ledbetter M, Cottin S, Sturrock K, De Pascale S, Scaloni A, Fiore A. α-Dicarbonyl compounds trapping ability and antiglycative effect of high-molecular-weight brewer's spent grain melanoidins. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Paredes-Ramos M, Conde Piñeiro E, Lopez Vilariño JM. Brewers' spent hop revalorization for the production of high added-value cosmetics ingredients with elastase inhibition capacity. Sci Rep 2022; 12:22074. [PMID: 36543856 PMCID: PMC9772169 DOI: 10.1038/s41598-022-26149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
This article summarizes the analysis of α and β-acids and prenylflavonoids from brewers' spent hop (BSH) as source of bioactive molecules to improve skin integrity by inhibiting elastase activity. To maximize the efficacy of the BSH extracts, it was necessary to identify the most bioactive hop compounds and the extraction parameters to maximize elastase inhibition and total antioxidant capacity. Thus, a computational methodology was carried out to test the anti-elastase potential of these hop molecules, detecting cis-iso-α-cohumulone and 8-prenylnaringenin as main inhibitors. Then, BSH extracts were optimized to ensure the maximum extraction of bioactive compounds, using compatible solvents (water and 100% plant-based propanediol) according to the green cosmetic standards. Finally, a determination and quantification method based on HPLC-MS/MS was used to guarantee the presence of the bioactive molecules, detecting a higher concentration of cis-iso-α-cohumulone and 8-prenylnaringenin in those samples with high anti-elastase activity. By optimizing extraction conditions and agents, a BSH extract was designed, showing high antioxidant (81.9 mmol Trolox/L) and high anti-elastase capacities.
Collapse
Affiliation(s)
| | - Enma Conde Piñeiro
- GLECEX S.L. (Global and Ecofriendly Natural Extracts S.L.), Edificio CITI, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, Ourense Spain
| | | |
Collapse
|
7
|
Khaksar G, Sirijan M, Suntichaikamolkul N, Sirikantaramas S. Metabolomics for Agricultural Waste Valorization: Shifting Toward a Sustainable Bioeconomy. FRONTIERS IN PLANT SCIENCE 2022; 13:938480. [PMID: 35832216 PMCID: PMC9273160 DOI: 10.3389/fpls.2022.938480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agriculture has been considered as a fundamental industry for human survival since ancient times. Local and traditional agriculture are based on circular sustainability models, which produce practically no waste. However, owing to population growth and current market demands, modern agriculture is based on linear and large-scale production systems, generating tons of organic agricultural waste (OAW), such as rejected or inedible plant tissues (shells, peels, stalks, etc.). Generally, this waste accumulates in landfills and creates negative environmental impacts. The plant kingdom is rich in metabolic diversity, harboring over 200,000 structurally distinct metabolites that are naturally present in plants. Hence, OAW is considered to be a rich source of bioactive compounds, including phenolic compounds and secondary metabolites that exert a wide range of health benefits. Accordingly, OAW can be used as extraction material for the discovery and recovery of novel functional compounds that can be reinserted into the production system. This approach would alleviate the undesired environmental impacts of OAW accumulation in landfills, while providing added value to food, pharmaceutical, cosmetic, and nutraceutical products and introducing a circular economic model in the modern agricultural industry. In this regard, metabolomics-based approaches have gained increasing interest in the agri-food sector for a variety of applications, including the rediscovery of bioactive compounds, owing to advances in analytical instrumentation and data analytics platforms. This mini review summarizes the major aspects regarding the identification of novel bioactive compounds from agricultural waste, focusing on metabolomics as the main tool.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkon Sirijan
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Nithiwat Suntichaikamolkul
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Naibaho J, Wojdyło A, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Antioxidant activities and polyphenolic identification by UPLC-MS/MS of autoclaved brewers’ spent grain. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Plioni I, Kalogeropoulou A, Dimitrellou D, Kandylis P, Kanellaki M, Nigam PS, Koutinas AA. Effect of cellulose crystallinity modification by starch gel treatment for improvement in ethanol fermentation rate by non-GM yeast cell factories. Bioprocess Biosyst Eng 2022; 45:783-790. [PMID: 35188585 DOI: 10.1007/s00449-022-02706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
This paper studies the reduction of crystallinity degree (CD) of cellulose treated with starch gel (SG), and the correlation of CD with the fermentation efficiency of cellulose to fuel-grade ethanol. Cellulose bioconversion from wood sawdust, consisting of three processes, was conducted in the same batch (one-step). The XRD and TEM analysis revealed 11% reduction in cellulose CD after its treatment with SG. One-step bioconversion process was performed employing two cell factories (CF) of non-engineered S. cerevisiae. CFs contained non- engineered S. cerevisiae cells covered with either SG entrapping Trichoderma reesei or cellulases prepared in the laboratory and immobilized in SG. The consolidated fermentation of treated cellulose resulted in an increase of bioethanol concentration (60-90%) in 2-day fermentation and the maximum ethanol concentration reached was approximately 5 mL/L (3.95 g/L). The fermentation efficiency for grade-fuel ethanol production was improved by cellulose pretreatment using SG to achieve reduced CD.
Collapse
Affiliation(s)
- Iris Plioni
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece
| | | | - Dimitra Dimitrellou
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece.,Department of Food Science and Technology, Ionian University, Kefalonia, 28100, Argostolion, Greece
| | - Panagiotis Kandylis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Athanasios A Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
11
|
Sustainable Solar Drying of Brewer’s Spent Grains: A Comparison with Conventional Electric Convective Drying. Processes (Basel) 2022. [DOI: 10.3390/pr10020339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spent grains from microbreweries are mostly formed by malting barley (or malt) and are suitable for a further valorization process. Transforming spent grains from waste to raw materials, for instance, in the production of nontraditional flour, requires a previous drying process. A natural convection solar dryer (NCSD) was evaluated as an alternative to a conventional electric convective dryer (CECD) for the dehydration process of local microbrewers’ spent grains. Two types of brewer’s spent grains (BSG; Golden ale and Red ale) were dried with both systems, and sustainability indices, specific energy consumption (eC), and CO2 emissions were calculated and used to assess the environmental advantages and disadvantages of the NCSD. Then, suitable models (empirical, neural networks, and computational fluid dynamics) were used to simulate both types of drying processes under different conditions. The drying times were 30–85 min (depending on the drying temperature, 363.15 K and 333.15 K) and 345–430 min (depending on the starting daytime hour at which the drying process began) for the CECD and the NCSD, respectively. However, eC and CO2 emissions for the CECD were 1.68–1.88 · 10−3 (kW h)/kg and 294.80–410.73 kg/(kW h) for the different drying temperatures. Using the NCSD, both indicators were null, considering this aspect as an environmental benefit.
Collapse
|
12
|
Galanakis CM. Sustainable Applications for the Valorization of Cereal Processing By-Products. Foods 2022; 11:241. [PMID: 35053973 PMCID: PMC8775229 DOI: 10.3390/foods11020241] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
This review article revises the sustainable practices and applications to valorize valuable components recovered from cereal processing by-products. After introducing cereal processing by-products, their healthy compounds, and corresponding functional properties, the article explores reutilization opportunities of by-products emphasizing specific sources (e.g., oat and wheat bran, distillers' dried grains, etc.) and the biorefinery approach. Proteins and soluble dietary fibers such as arabinoxylans are of particular interest due to their content in the cereal processing by-products and their easy extraction based on conventional technologies such as enzyme-assisted extraction and membrane filtration. Non-thermal technologies have also been suggested to improve sustainability recovery approaches. Finally, the article discusses the different applications for the recovered high-added value compounds that span across biotechnology, foods, and bakery products.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, 73131 Chania, Greece;
- Department of Biology, College of Science, Taif University, Taif 26571, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| |
Collapse
|
13
|
Naibaho J, Korzeniowska M, Wojdyło A, Figiel A, Yang B, Laaksonen O, Foste M, Vilu R, Viiard E. Fiber modification of brewers’ spent grain by autoclave treatment to improve its properties as a functional food ingredient. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Luft L, Confortin TC, Todero I, Brun T, Ugalde GA, Zabot GL, Mazutti MA. Production of bioemulsifying compounds from Phoma dimorpha using agroindustrial residues as additional carbon sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). INSECTS 2021; 12:insects12050475. [PMID: 34065504 PMCID: PMC8160662 DOI: 10.3390/insects12050475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary The Black Soldier Fly insect (BSF) Hermetia illucens (L.) (Diptera: Stratiomyidae) metabolizes low degraded ingredients and converts them into larval enriched nutrients. In the present study, the effect of processed beverage by-products, such as spent coffee grounds and brewer’s spent grains and their mixtures on biological parameters (larval development, survival), conversion efficiency and body composition of the BSF insect was evaluated. The effect of different rearing densities of BSF on the above parameters were also studied. Insect larvae were reared successfully in all tested diets, except for sole spent coffee grounds. Substrate mass reduction, protein conversion and bioconversion rates were higher on the reference feed, followed by brewer’s spent grains and brewer’s spent grains—spent coffee grounds mixture enriched with brewer’s yeast. Density did not affect any larval parameter except for fat. Our results illustrate that low value beverage by-products can be successfully utilized as constituents of a successful BSF diet. Abstract The effect of spent coffee grounds (SCG), brewer’s spent grains (BSG) and their mixtures with the addition of brewer’s yeast (BY) were tested in two rearing densities of the Black Soldier Fly, Hermetia illucens (L.). Different treatments were investigated on larval development, survival, yield, protein conversion (PrCR) and bioconversion rate (BCR), substrate mass reduction and body composition of the insect. BSF larvae were able to develop sufficiently in all diets, except on sole SCG. The addition of BY enhanced the performance properties of diets, especially in the case of SCG, where larvae underperformed. Substrate mass reduction, PrCR and BCR were affected only by feed and exhibited higher values on reference feed, followed by BSG and SCG+BSG enriched with BY. Density did not have a significant effect on various larval nutrients, except for fat, which was higher on larvae fed enriched feeds with BY and in the 300 larval density. The interaction between feed and density strongly affected the nitrogen and protein levels, larval yield and ash. Generally, diets which contained SCG exhibited high larval crude protein levels. Our results illustrate that low value beverage by-products can be successfully utilized as constituents of a successful BSF diet.
Collapse
|
16
|
Sharma R, Mokhtari S, Jafari SM, Sharma S. Barley-based probiotic food mixture: health effects and future prospects. Crit Rev Food Sci Nutr 2021; 62:7961-7975. [PMID: 33998934 DOI: 10.1080/10408398.2021.1921692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumers around the globe are increasingly aware of the relation between nutrition and health. In this sense, food products that can improve gastrointestinal health such as probiotics, prebiotics and synbiotics are the most important segment within functional foods. Cereals are the potential substrates for probiotic products as they contain nutrients easily assimilated by probiotics and serve as the transporters of Lactobacilli through the severe conditions of gastrointestinal tract. Barley is one of the important substrates for the probiotic formulation because of its high phenolic compounds, β-glucans and tocols. The purpose of this review is to examine recent information regarding barley-based probiotic foods with a specific focus on the potential benefits of barley as a substrate for probiotic microorganisms in the development of dairy and nondairy based food products, and to study the effects of food matrices containing barley β-glucans on the growth and features of Lactobacillus strains after fermentation.
Collapse
Affiliation(s)
- Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Samira Mokhtari
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
17
|
Naibaho J, Korzeniowska M. Brewers' spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J Food Sci 2021; 86:1532-1551. [PMID: 33895998 DOI: 10.1111/1750-3841.15714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
The nutritional properties of brewers' spent grain (BSG) have been widely studied, considering its potential as a healthy food ingredient. Because of its fiber composition (amount and ratio), however, adding BSG into the food matrix to bring about changes in physical properties has been believed to impact negatively on the acceptability of the final products' properties, particularly color and texture. Fiber modification can enhance the quality of fiber and can be applied to BSG. Although it appears challenging, modifying fiber composition requires further study, particularly if the acceptability of the final products is to be improved. Furthermore, the level of fiber degradation during the modification treatment needs to be examined to meet the increased demand for BSG in final food products. This concise synthesis provides a new perspective for increasing the use of BSG as a food ingredient that is characterized by high nutrition and acceptability.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
18
|
Naibaho J, Korzeniowska M. The variability of physico-chemical properties of brewery spent grain from 8 different breweries. Heliyon 2021; 7:e06583. [PMID: 33869835 PMCID: PMC8035523 DOI: 10.1016/j.heliyon.2021.e06583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
This research aimed to identify the differences in brewer's spent grains, which were collected from eight breweries for their physicochemical properties. The spent grains were dried until they reached stable weights, grounded to pass through a 385-μm sieve, vacuum-packed in nontransparent packaging, and kept in room temperature conditions for further analysis. The physicochemical properties, including proximate, color, water activity, water-holding capacity, oil-holding capacity, and density were evaluated. The results showed some differences in all measured quality parameters between all eight different spent barley grain samples. A similar pattern was noted in some properties studied. Hence, mathematical modeling of these studied properties should be undertaken with further qualities, such as fiber composition, mechanical properties, and thermal stability.
Collapse
|
19
|
Abstract
Brewer’s spent grain (BSG) is a processing waste generated in large quantities by the brewing industry. It is estimated that over 38 million tons of BSG is produced worldwide each year and is usually used as animal feed, composted, or thrown into landfills. BSG contains valuable nutritional components, including protein, fiber, and antioxidants. Due to its brittle texture, strong nutty flavors, and dark color profiles, BSG has seen limited use in food products for human consumption. The objective of this study was to develop a palatable chip product that maximized the level of inclusion of BSG. Chips were produced that contained BSG levels ranging from 8% to 40%, and the physical and sensory properties of the chips were evaluated. Spent grain samples were provided by Iron Monk in Stillwater and were dried at a low temperature and milled into flour for use in the chip formulation. BSG chips were evaluated for water activity, color, and texture (fracture force). An informal sensory evaluation was conducted to evaluate flavor, texture, and probability of purchase using a 5-point hedonic rating scale. Results showed that there were no significant differences in the texture of the chips containing different levels of BSG. The color measurements showed no significant differences between
and a
values for the chips containing different inclusion levels of BSG, but there were some differences in the b
values. Results from the sensory evaluation showed that consumers preferred the texture of chips with 40% BSG over chips with 8% BSG, and they were also more likely to purchase the 40% BSG chips. There were no significant differences in flavor among the chips containing different inclusion levels of BSG. These results suggest that, for a chip-type product, BSG inclusion levels up to 40% are possible with positive consumer responses. Development of an alternative value-added product represents an opportunity for breweries nationwide to turn a processing waste into a future asset.
Collapse
|
20
|
Kavalopoulos M, Stoumpou V, Christofi A, Mai S, Barampouti EM, Moustakas K, Malamis D, Loizidou M. Sustainable valorisation pathways mitigating environmental pollution from brewers' spent grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116069. [PMID: 33338956 DOI: 10.1016/j.envpol.2020.116069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In this work, valorisation pathways of brewers' spent grains (BSG) towards biofuels production under the biorefinery concept were studied utilizing experimental data that provide a common base for straightforward comparison. The dehydration and the recovery of used oil, bioethanol and biogas from BSG were studied. The process units involved were thoroughly investigated and optimized. The oil extraction efficiency reached up to 70% using solid-liquid extraction process with hexane as solvent. The optimal ethanol yield achieved was 45% after the application of acid pretreatment, enzymatic hydrolysis with CellicCTec2 and fermentation with S. Cerevisiae. As far as biogas potential is concerned, the raw BSG, defatted BSG and stillage presented values equal to 379 ± 19, 235 ± 21 and 168 ± 39 mL biogas/g for respectively. Through the combination of the proposed schemes, three biorefinery scenarios were set up able to produce biodiesel, bioethanol and/or biogas. Material flow diagrams were set up in order to assess these schemes. Given that BSG could ensure 'green' energy production in the range of 4.5-7.0 million MJ/y if the European BSG potential is fully valorised, BSG could substantially contribute to the biofuel energy strategy.
Collapse
Affiliation(s)
- Michael Kavalopoulos
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Vasileia Stoumpou
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Andreas Christofi
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Sofia Mai
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Elli Maria Barampouti
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Konstantinos Moustakas
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Dimitris Malamis
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Maria Loizidou
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece.
| |
Collapse
|
21
|
Horn PA, Pedron NB, Junges LH, Rebelo AM, da Silva Filho HH, Zeni ALB. Antioxidant profile at the different stages of craft beers production: the role of phenolic compounds. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abstract
This review was based on updated research on how to use brewer’s spent grains (BSG). The use of BSG was considered both in food, as an ingredient or using value-added components derived from brewer’s spent grain, or in non-food products such as pharmaceuticals, cosmetics, construction, or food packaging. BSG is a valuable source of individual components due to its high nutritional value and low cost that is worth exploiting more to reduce food waste but also to improve human health and the environment. From the bioeconomy point of view, biological resources are transformed into bioenergetically viable and economically valuable products. The pretreatment stage of BSG biomass plays an important role in the efficiency of the extraction process and the yield obtained. The pretreatments presented in this review are both conventional and modern extraction methods, such as solvent extractions or microwave-assisted extractions, ultrasonic-assisted extractions, etc.
Collapse
|
23
|
Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, Verardo V, Díaz-de-Cerio E, Coda R, Rizzello CG. Bioprocessing of Brewers' Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Front Microbiol 2020; 11:1831. [PMID: 32849431 PMCID: PMC7411387 DOI: 10.3389/fmicb.2020.01831] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023] Open
Abstract
Brewers' spent grain (BSG) is the major by-product of the brewing industry which remain largely unutilized despite its nutritional quality. In this study, the effects of fermentation on BSG antioxidant potential were analyzed. A biotechnological protocol including the use of xylanase followed by fermentation with Lactiplantibacillus plantarum (Lactobacillus plantarum) PU1, PRO17, and H46 was used. Bioprocessed BSG exhibited enhanced antioxidant potential, characterized by high radical scavenging activity, long-term inhibition of linoleic acid oxidation and protective effect toward oxidative stress on human keratinocytes NCTC 2544. Immunolabelling and confocal laser microscopy showed that xylanase caused an extensive cell wall arabinoxylan disruption, contributing to the release of bound phenols molecules, thus available to further conversion through lactic acid bacteria metabolism. To clarify the role of fermentation on the antioxidant BSG potential, phenols were selectively extracted and characterized through HPLC-MS techniques. Novel antioxidant peptides were purified and identified in the most active bioprocessed BSG.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Annika Krona
- Research Institute of Sweden, Gothenburg, Sweden
| | - Sera Jacob
- Research Institute of Sweden, Gothenburg, Sweden
| | | | | | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
| | | | - Rossana Coda
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, Helsinki, Finland
| | | |
Collapse
|
24
|
Tlais AZA, Fiorino GM, Polo A, Filannino P, Di Cagno R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020; 25:E2987. [PMID: 32629805 PMCID: PMC7412346 DOI: 10.3390/molecules25132987] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Food waste (FW) represents a global and ever-growing issue that is attracting more attention due to its environmental, ethical, social and economic implications. Although a valuable quantity of bioactive components is still present in the residuals, nowadays most FW is destined for animal feeding, landfill disposal, composting and incineration. Aiming to valorize and recycle food byproducts, the development of novel and sustainable strategies to reduce the annual food loss appears an urgent need. In particular, plant byproducts are a plentiful source of high-value compounds that may be exploited as natural antioxidants, preservatives and supplements in the food industry, pharmaceuticals and cosmetics. In this review, a comprehensive overview of the main bioactive compounds in fruit, vegetable and cereal byproducts is provided. Additionally, the natural and suitable application of tailored enzymatic treatments and fermentation to recover high-value compounds from plant byproducts is discussed. Based on these promising strategies, a future expansion of green biotechnologies to revalorize the high quantity of byproducts is highly encouraging to reduce the food waste/losses and promote benefits on human health.
Collapse
Affiliation(s)
- Ali Zein Alabiden Tlais
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Giuseppina Maria Fiorino
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Andrea Polo
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| |
Collapse
|
25
|
Screening and evaluation of filamentous fungi potential for protease production in swine plasma and red blood cells-based media: qualitative and quantitative methods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Carrillo-Nieves D, Rostro Alanís MJ, de la Cruz Quiroz R, Ruiz HA, Iqbal HM, Parra-Saldívar R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2019; 102:63-74. [DOI: 10.1016/j.rser.2018.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Xie C, Wei S, Chen D, Lan W, Yan Z, Wang Z. Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(ii) adsorption and detection. RSC Adv 2019; 9:23474-23483. [PMID: 35530598 PMCID: PMC9069323 DOI: 10.1039/c9ra03859k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
In this work, a magnetic ion imprinted polymer (MIIP) with specific recognition capability toward cadmium was prepared by a sol–gel method using waste beer yeast, which is a macromolecule biomass, as a functional monomer. The obtained Cd(ii)-MIIP was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and adsorption experiments. Then, a MIIP adsorbent based magnetic solid phase extraction (MSPE)-graphite furnace atomic absorption (GFAA) method was established to analyze the cadmium content in food and environmental samples. The maximum cadmium adsorption capacities by the MIIP and magnetic non-imprinted polymer (MNIP) were 62.74 and 32.38 mg g−1, respectively. The absorption by the MIIP was fitted using a pseudo-second-order kinetic model. The Cd(ii)-MIIP demonstrated superior absorption capability for selective removal cadmium. The recovery rate of the MIIP was 90.7% after four adsorption–desorption cycles. The calculated Cd(ii) detection limit (S/N = 3) was 0.18 μg L−1 with the relative standard deviation (RSD) equal to ∼3.5% for 10 μg L−1 of Cd(ii) standard solution. Our proposed method was successfully used in detecting Cd(ii) in aqueous samples. The results obtained in this work suggest that the Cd(ii)-MIIPs might be promising adsorbents to remove harmful cadmium ions from aqueous samples. In this work, a magnetic ion imprinted polymer (MIIP) with specific recognition capability toward cadmium was prepared by a sol–gel method using waste beer yeast, which is a macromolecule biomass, as a functional monomer.![]()
Collapse
Affiliation(s)
- Chunsheng Xie
- College of Environmental and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| | - Shoulian Wei
- College of Environmental and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| | - Dan Chen
- College of Environmental and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| | - Wenying Lan
- College of Environmental and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| | - Zijun Yan
- College of Environmental and Chemical Engineering
- Zhaoqing University
- Zhaoqing
- China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences
- Ministry of Ecology and Environment of the People's Republic of China
- Guangzhou
- China
| |
Collapse
|
29
|
Cooray ST, Chen WN. Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|