1
|
de Rosset A, Tyszkiewicz N, Wiśniewski J, Pudełko-Malik N, Rutkowski P, Młynarz P, Pasternak G. Bioelectrochemical synthesis of rhamnolipids and energy production and its correlation with nitrogen in air-cathode microbial fuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121514. [PMID: 38908152 DOI: 10.1016/j.jenvman.2024.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.
Collapse
Affiliation(s)
- Aleksander de Rosset
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Natalia Tyszkiewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Natalia Pudełko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Piotr Rutkowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Grzegorz Pasternak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland.
| |
Collapse
|
2
|
Mahmoodzadeh F, Navidjouy N, Alizadeh S, Rahimnejad M. Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Sci Rep 2023; 13:20755. [PMID: 38007521 PMCID: PMC10676379 DOI: 10.1038/s41598-023-48290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
Microbial fuel cells (MFCs) are a self-sustaining and environmentally friendly system for the simultaneous was tewater treatment and bioelectricity generation. The type and material of the electrode are critical factors that can influence the efficiency of this treatment process. In this study, graphite plates and carbon felt were modified through the electrodeposition of nickel followed by the formation of a biofilm, resulting in conductive bio-anode thin film electrodes with enhanced power generation capacity. The structural and morphological properties of the electrode surfaces were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, and field-emission scanning electron microscopy techniques. Maximum voltage, current density, and power generation were investigated using a dual-chamber MFC equipped with a Nafion 117 membrane and bio-nickel-doped carbon felt (bio-Ni@CF) and bio-nickel-doped graphite plate (bio-Ni@GP) electrodes under constant temperature conditions. The polarization and power curves obtained using different anode electrodes revealed that the maximum voltage, power and current density achieved with the bio-Ni@CF electrode were 468.0 mV, 130.72 mW/m2 and 760.0 mA/m2 respectively. Moreover, the modified electrodes demonstrated appropriate stability and resistance during successful runs. These results suggest that nickel-doped carbon-based electrodes can serve as suitable and stable supported catalysts and conductors for improving efficiency and increasing power generation in MFCs.
Collapse
Affiliation(s)
- Fatemeh Mahmoodzadeh
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174-38683, Iran
| | - Mostafa Rahimnejad
- Department of Chemical Engineering, Biofuel and Renewable Energy Research Center, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
3
|
Carolin C F, Senthil Kumar P, Mohanakrishna G, Hemavathy RV, Rangasamy G, M Aminabhavi T. Sustainable production of biosurfactants via valorisation of industrial wastes as alternate feedstocks. CHEMOSPHERE 2023; 312:137326. [PMID: 36410507 DOI: 10.1016/j.chemosphere.2022.137326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Globally, the rapid increase in the human population has given rise to a variety of industries, which have produced a variety of wastes. Due to their detrimental effects on both human and environmental health, pollutants from industry have taken centre stage among the various types of waste produced. The amount of waste produced has therefore increased the demand for effective waste management. In order to create valuable chemicals for sustainable waste management, trash must be viewed as valuable addition. One of the most environmentally beneficial and sustainable choices is to use garbage to make biosurfactants. The utilization of waste in the production of biosurfactant provides lower processing costs, higher availability of feedstock and environmental friendly product along with its characteristics. The current review focuses on the use of industrial wastes in the creation of sustainable biosurfactants and discusses how biosurfactants are categorized. Waste generation in the fruit industry, agro-based industries, as well as sugar-industry and dairy-based industries is documented. Each waste and wastewater are listed along with its benefits and drawbacks. This review places a strong emphasis on waste management, which has important implications for the bioeconomy. It also offers the most recent scientific literature on industrial waste, including information on the role of renewable feedstock for the production of biosurfactants, as well as the difficulties and unmet research needs in this area.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580031, India.
| | - R V Hemavathy
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580031, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| |
Collapse
|
4
|
Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes (Basel) 2021. [DOI: 10.3390/pr9071221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.
Collapse
|
5
|
Raychaudhuri A, Behera M. Enhancement of bioelectricity generation by integrating acidogenic compartment into a dual-chambered microbial fuel cell during rice mill wastewater treatment. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Pasternak G, Askitosari TD, Rosenbaum MA. Biosurfactants and Synthetic Surfactants in Bioelectrochemical Systems: A Mini-Review. Front Microbiol 2020; 11:358. [PMID: 32231644 PMCID: PMC7082750 DOI: 10.3389/fmicb.2020.00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Bioelectrochemical systems (BESs) are ruled by a complex combination of biological and abiotic factors. The interplay of these factors determines the overall efficiency of BES in generating electricity and treating waste. The recent progress in bioelectrochemistry of BESs and electrobiotechnology exposed an important group of compounds, which have a significant contribution to operation and efficiency: surface-active agents, also termed surfactants. Implementation of the interfacial science led to determining several effects of synthetic and natural surfactants on BESs operation. In high pH, these amphiphilic compounds prevent the cathode electrodes from biodeterioration. Through solubilization, their presence leads to increased catabolism of hydrophobic compounds. They interfere with the surface of the electrodes leading to improved biofilm formation, while affecting its microarchitecture and composition. Furthermore, they may act as quorum sensing activators and induce the synthesis of electron shuttles produced by electroactive bacteria. On the other hand, the bioelectrochemical activity can be tailored for new, improved biosurfactant production processes. Herein, the most recent knowledge on the effects of these promising compounds in BESs is discussed.
Collapse
Affiliation(s)
- Grzegorz Pasternak
- Laboratory of Microbial Electrochemical Systems, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wrocław University of Science and Technology, Wrocław, Poland
| | - Theresia D Askitosari
- Laboratory of Microorganism Biotechnology, Faculty of Technobiology, University of Surabaya, Surabaya, Indonesia
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Kirubaharan CJ, Kumar GG, Sha C, Zhou D, Yang H, Nahm KS, Raj BS, Zhang Y, Yong YC. Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135136] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Su X, Zhao W, Xia D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:245. [PMID: 30202440 PMCID: PMC6128992 DOI: 10.1186/s13068-018-1237-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/27/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Biogenic and biogenic-thermogenic coalbed methane (CBM) are important energy reserves for unconventional natural gas. Thus, to investigate biogenic gas formation mechanisms, a series of fresh coal samples from several representative areas of China were analyzed to detect hydrogen-producing bacteria and methanogens in an in situ coal seam. Complete microbial DNA sequences were extracted from enrichment cultures grown on coal using the Miseq high-throughput sequencing technique to study the diversity of microbial communities. The species present and differences between the dominant hydrogen-producing bacteria and methanogens in the coal seam are then considered based on environmental factors. RESULTS Sequences in the Archaea domain were classified into four phyla and included members from Euryarchaeota, Thaumarchaeota, Woesearchaeota, and Pacearchaeota. The Bacteria domain included members of the phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, Chloroflexi, and Nitrospirae. The hydrogen-producing bacteria was dominated by the genera: Clostridium, Enterobacter, Klebsiella, Citrobacter, and Bacillus; the methanogens included the genera: Methanorix, Methanosarcina, Methanoculleus, Methanobrevibacter, Methanobacterium, Methanofollis, and Methanomassiliicoccus. CONCLUSION Traces of hydrogen-producing bacteria and methanogens were detected in both biogenic and non-biogenic CBM areas. The diversity and abundance of bacteria in the biogenic CBM areas are relatively higher than in the areas without biogenic CBM. The community structure and distribution characteristics depend on coal rank, trace metal elements, temperature, depth and groundwater dynamic conditions. Biogenic gas was mainly composed of hydrogen and methane, the difference and diversity were caused by microbe-specific fermentation of substrates; as well as by the environmental conditions. This discovery is a significant contribution to extreme microbiology, and thus lays the foundation for research on biogenic CBM.
Collapse
Affiliation(s)
- Xianbo Su
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China
- Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000 Henan Province China
| | - Weizhong Zhao
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China
| | - Daping Xia
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China
- Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000 Henan Province China
| |
Collapse
|