1
|
Rostampour S, Cook R, Jhang SS, Li Y, Fan C, Sung LP. Changes in the Chemical Composition of Polyethylene Terephthalate under UV Radiation in Various Environmental Conditions. Polymers (Basel) 2024; 16:2249. [PMID: 39204469 PMCID: PMC11358994 DOI: 10.3390/polym16162249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro(nano)plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.e., ≥95% relative humidity) and dry conditions (i.e., ≤5% relative humidity) with varying temperatures (30 °C, 40 °C, and 50 °C) for up 20 days. ATR-FTIR was used to characterize the chemical composition change of degraded PET as a function of UV exposure time. The results showed that the cleavage of the ester bond at peak 1713 cm-1 and the formation of the carboxylic acid at peak 1685 cm-1 were significantly influenced by UV radiation. Furthermore, the formation of carboxylic acid was considerably higher at saturated humidity and 50 °C conditions compared with dry conditions. The ester bond cleavage was also more pronounced in saturated humidity conditions. The novelty of this study is to provide insights into the chemical degradation of PET under environmental conditions, including UV radiation, humidity, and temperature. The results can be used to develop strategies to reduce the environmental impact of plastic pollution.
Collapse
Affiliation(s)
- Sara Rostampour
- PREP Associate, Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Rachel Cook
- Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Song-Syun Jhang
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 701, Taiwan;
| | - Yuejin Li
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Chunlei Fan
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Li-Piin Sung
- Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| |
Collapse
|
2
|
Ebrahimi Farshchi M, Madadian Bozorg N, Ehsani A, Aghdasinia H, Chen Z, Rostamnia S, Ni BJ. Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118842. [PMID: 37619388 DOI: 10.1016/j.jenvman.2023.118842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Metal-organic frameworks (MOFs) are attractive functional materials due to their high surface area, high porosity, and flexible compositions. However, the high precursor cost and complex synthetic processes hinder their large-scale applications. Herein, a novel green approach has been developed toward the synthesis of Cu-based MOF by a solvent-free mechano-synthesis method and utilizing consumed polyethylene terephthalate (PET)-derived benzenedicarboxylate (BDC) as the linker. The as-prepared CuBDC and aminated CuBDC (CuBDC-NH2) act as green catalysts for the reduction of deleterious 4-nitrophenol (4-NP) into the value-added 4-aminophenol (4-AP). Compared with CuBDC, CuBDC-NH2 shows increased adsorption capability and reduction efficiency. The mechanism and thermodynamic studies suggest that the adsorption of 4-NP on CuBDC-NH2 is an endothermic, spontaneous, favorable, and physical adsorption process. Furthermore, CuBDC-NH2 can expedite the reduction of 4-NP by participating in an adsorptive catalytic process. With the CuBDC-NH2 catalyst, the catalytic normalized kinetic rate of 4-NP was achieved 11.28 mol/min. mg, outperforming state-of-the-art catalysts, and a complete reduction occur in 5 min for a concentrated effluent (200-ppm 4-NP). The plastic waste-derived MOF-mediated catalytic valorization of organic pollutants demonstrated here opens an avenue for the green recycling/utilization of plastic waste, providing meaningful insights into the sustainable management of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Negar Madadian Bozorg
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Atefeh Ehsani
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
3
|
Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, Jeon H, Park J, Oh DX. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. CHEMOSPHERE 2023; 320:138089. [PMID: 36754297 DOI: 10.1016/j.chemosphere.2023.138089] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Human society has become increasingly reliant on plastic because it allows for convenient and sanitary living. However, recycling rates are currently low, which means that the majority of plastic waste ends up in landfills or the ocean. Increasing recycling and upcycling rates is a critical strategy for addressing the issues caused by plastic pollution, but there are several technical limitations to overcome. This article reviews advancements in polymer technology that aim to improve the efficiency of recycling and upcycling plastic waste. In food packaging, natural polymers with excellent gas barrier properties and self-cleaning abilities have been introduced as environmentally friendly alternatives to existing materials and to reduce food-derived contamination. Upcycling and valorization approaches have emerged to transform plastic waste into high-value-added products. Recent advancements in the development of recyclable high-performance plastics include the design of super engineering thermoplastics and engineering chemical bonds of thermosets to make them recyclable and biodegradable. Further research is needed to develop more cost-effective and scalable technologies to address the plastic pollution problem through sustainable recycling and upcycling.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Advanced Fabrication and Multi-Properties of Aluminum-Based Aerogels from Aluminum Waste for Thermal Insulation and Oil Absorption Applications. Molecules 2023; 28:molecules28062727. [PMID: 36985697 PMCID: PMC10058144 DOI: 10.3390/molecules28062727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Metal-based aerogels have attracted numerous studies due to their unique physical, structural, thermal, and chemical properties. Utilizing aluminum waste, a novel, facile, environmentally friendly approach to aluminum-based aerogels is proposed. In this work, the aluminum-based aerogels produced do not use toxic chemicals unlike conventional aerogel production. Aluminum powder, with poly(acrylic acid) and carboxymethyl cellulose as binders, is converted into aluminum-based aerogels using the freeze-drying method. The aluminum-based aerogels have low density (0.08–0.12 g/cm3) and high porosity (93.83–95.68%). The thermal conductivity of the aerogels obtained is very low (0.038–0.045 W/m·K), comparable to other types of aerogels and commercial heat insulation materials. Additionally, the aerogels can withstand temperatures up to 1000 °C with less than 40% decomposition. The aerogels exhibited promising oil absorption properties with their absorption capacity of 9.8 g/g and 0.784 g/cm3. The Young’s modulus of the aerogels ranged from 70.6 kPa to 330.2 kPa. This study suggests that aluminum-based aerogels have potential in thermal insulation and oil absorption applications.
Collapse
|
5
|
Nikam PC, Rao AR, Shertukde VV. Effect of polyethylene terephthalate fiber reinforced with non‐hydrophilic nano‐silica on the mechanical, thermic, and chemical shielding characteristics of saturated polyurethane composite. J Appl Polym Sci 2022. [DOI: 10.1002/app.53334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pramod C. Nikam
- Department of Polymer and Surface Engineering Institute of Chemical Technology Mumbai India
| | - Adarsh R. Rao
- Department of Polymer and Surface Engineering Institute of Chemical Technology Mumbai India
| | - Vikrant V. Shertukde
- Department of Polymer and Surface Engineering Institute of Chemical Technology Mumbai India
| |
Collapse
|
6
|
Lai WL, Sharma S, Roy S, Maji PK, Sharma B, Ramakrishna S, Goh KL. Roadmap to sustainable plastic waste management: a focused study on recycling PET for triboelectric nanogenerator production in Singapore and India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51234-51268. [PMID: 35604599 PMCID: PMC9125019 DOI: 10.1007/s11356-022-20854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This study explores the implications of plastic waste and recycling management on recyclates for manufacturing clean-energy harvesting devices. The focus is on a comparative analysis of using recycled polyethylene terephthalate (PET) for triboelectric nanogenerator (TENG) production, in two densely populated Asian countries of large economies, namely Singapore and India. Of the total 930,000 tonnes of plastic waste generated in Singapore in 2019, only 4% were recycled and the rest were incinerated. In comparison, India yielded 8.6 million tonnes of plastic waste and 70% were recycled. Both countries have strict recycling goals and have instituted different waste and recycling management regulations. The findings show that the waste policies and legislations, responsibilities and heterogeneity in collection systems and infrastructure of the respective country are the pivotal attributes to successful recycling. Challenges to recycle plastic include segregation, adulterants and macromolecular structure degradation which could influence the recyclate properties and pose challenges for manufacturing products. A model was developed to evaluate the economic value and mechanical potential of PET recyclate. The model predicted a 30% loss of material performance and a 65% loss of economic value after the first recycling cycle. The economic value depreciates to zero with decreasing mechanical performance of plastic after multiple recycling cycles. For understanding how TENG technology could be incorporated into the circular economy, a model has estimated about 20 million and 7300 billion pieces of aerogel mats can be manufactured from the PET bottles disposed in Singapore and India, respectively which were sufficient to produce small-scale TENG devices for all peoples in both countries.
Collapse
Affiliation(s)
- Wei Liang Lai
- Newcastle Research & Innovation Institute Singapore (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Shreya Sharma
- Newcastle Research & Innovation Institute Singapore (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Sunanda Roy
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
- Department of Mechanical Engineering, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Pradip Kumar Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Bhasha Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Kheng Lim Goh
- Newcastle Research & Innovation Institute Singapore (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
7
|
Fabrication and optimization of multifunctional nanoporous aerogels using recycled textile fibers from car tire wastes for oil-spill cleaning, heat-insulating and sound absorbing applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Shaikh JS, Shaikh NS, Mishra YK, Pawar SS, Parveen N, Shewale PM, Sabale S, Kanjanaboos P, Praserthdam S, Lokhande CD. The implementation of graphene-based aerogel in the field of supercapacitor. NANOTECHNOLOGY 2021; 32:362001. [PMID: 34125718 DOI: 10.1088/1361-6528/ac0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area. The aerogels encompass a high volume of pores which leads to easy soak by the electrolyte and fast charge-discharge process. Graphene aerogels assembled into three-dimensional (3D) architecture prevent there stacking of graphene sheets and maintain the high surface area and hence excellent cycling stability and rate capacitance. However, the energy density of graphene aerogels is limited due to EDLC type of charge storage mechanism. Consequently, 3D graphene aerogel coupled with pseudocapacitive materials such as transition metal oxides, metal hydroxides, conducting polymers, nitrides, chalcogenides show an efficient energy density and power density performance due to the presence of both types of charge storage mechanisms. This laconic review focuses on the design and development of graphene-based aerogel in the field of the supercapacitor. This review is an erudite article about methods, technology and electrochemical properties of graphene aerogel.
Collapse
Affiliation(s)
- Jasmin S Shaikh
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| | - Navajsharif S Shaikh
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - S S Pawar
- Department of Engineering Sciences, Sinhgad College of Engineering, Vadgaon, Pune, 41, India
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Poonam M Shewale
- D. Y. Patil School of Engineering and Technology, Lohegaon, Pune-412 105, Maharashtra, India
| | - Sandip Sabale
- P.G. Department of Chemistry, Jaysingpur College, Jaysingpur-416101, India
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Chandrakant D Lokhande
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| |
Collapse
|
9
|
Duong HM, Ling NRB, Thai QB, Le DK, Nguyen PTT, Goh XY, Phan-Thien N. A novel aerogel from thermal power plant waste for thermal and acoustic insulation applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:1-7. [PMID: 33592320 DOI: 10.1016/j.wasman.2021.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/28/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Massive quantities of fly ash are produced worldwide from thermal power plants, posing a serious environmental threat due to their storage and disposal problems. In this study, for the first time, fly ash is converted into an advanced and novel aerogel through a green and eco-friendly process. The developed aerogel has a low density of 0.10-0.19 g cm-3, a high porosity of up to 90%, a low thermal conductivity of 0.042-0.050 W/mK, and a good sound absorption coefficient (noise reduction coefficient [NRC] value of 0.20-0.30). It also shows a high compressive Young's modulus of up to 150 kPa. Therefore, the newly developed fly ash aerogel is a potential material for thermal and acoustic insulation applications, along with lightweight composites in automotive and aerospace applications.
Collapse
Affiliation(s)
- Hai M Duong
- Department of Mechanical Engineering, National University of Singapore, Singapore; Cuu Long University, Vinh Long, Viet Nam.
| | - Nathaniel R B Ling
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Quoc B Thai
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Duyen K Le
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Phuc T T Nguyen
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Xue Yang Goh
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
10
|
Mu X, Li Y, Liu X, Ma C, Jiang H, Zhu J, Chen X, Tang T, Mijowska E. Controllable Carbonization of Plastic Waste into Three-Dimensional Porous Carbon Nanosheets by Combined Catalyst for High Performance Capacitor. NANOMATERIALS 2020; 10:nano10061097. [PMID: 32498232 PMCID: PMC7353313 DOI: 10.3390/nano10061097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022]
Abstract
Polyethylene terephthalate (PET) plastic has been extensively used in our social life, but its poor biodegradability has led to serious environmental pollution and aroused worldwide concern. Up to now, various strategies have been proposed to address the issue, yet such strategies remain seriously impeded by many obstacles. Herein, waste PET plastic was selectively carbonized into three-dimensional (3D) porous carbon nanosheets (PCS) with high yield of 36.4 wt%, to be further hybridized with MnO2 nanoflakes to form PCS-MnO2 composites. Due to the introduction of an appropriate amount of MnO2 nanoflakes, the resulting PCS-MnO2 composite exhibited a specific capacitance of 210.5 F g-1 as well as a high areal capacitance of 0.33 F m-2. Furthermore, the PCS-MnO2 composite also showed excellent cycle stability (90.1% capacitance retention over 5000 cycles under a current density of 10 A g-1). The present study paved an avenue for the highly efficient recycling of PET waste into high value-added products (PCSs) for electrochemical energy storage.
Collapse
Affiliation(s)
- Xueying Mu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China;
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (C.M.); (H.J.)
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China;
- Correspondence: (Y.L.); (X.C.); (T.T.); Tel.: +86-431-8558-2361 (Y.L.); +48-091-449-6030 (X.C.); +86-431-8526-2004 (T.T.)
| | - Xiaoguang Liu
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 42, 71-065 Szczecin, Poland; (X.L.); (E.M.)
| | - Changde Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (C.M.); (H.J.)
| | - Hanqing Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (C.M.); (H.J.)
| | - Jiayi Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Science, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 42, 71-065 Szczecin, Poland; (X.L.); (E.M.)
- Correspondence: (Y.L.); (X.C.); (T.T.); Tel.: +86-431-8558-2361 (Y.L.); +48-091-449-6030 (X.C.); +86-431-8526-2004 (T.T.)
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (C.M.); (H.J.)
- Correspondence: (Y.L.); (X.C.); (T.T.); Tel.: +86-431-8558-2361 (Y.L.); +48-091-449-6030 (X.C.); +86-431-8526-2004 (T.T.)
| | - Ewa Mijowska
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 42, 71-065 Szczecin, Poland; (X.L.); (E.M.)
| |
Collapse
|