1
|
Wang W, Zhang S, Gao T, Li L. In-situ treatment of gaseous benzene in fixed-bed biofilter with polyurethane foam: Functional population response and benzene transformation pathway. BIORESOURCE TECHNOLOGY 2024; 405:130926. [PMID: 38824970 DOI: 10.1016/j.biortech.2024.130926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds emitted from landfills posed adverse effect on health. In this study, gaseous benzene was biologically treated using an in-situ biofilter without air pump. Its performance was investigated and the removal efficiency of benzene reached over 90 %. The decrease in the average benzene concentration was consistent with first-order reaction kinetics. Mycolicibacterium dominated the bacterial consortium (41-57 %) throughout the degradation. Annotation of genes by metagenomic analysis helped to deduce the degradation pathways (benzene degradation, catechol ortho-cleavage and meta-cleavage) and to reveal the contribution of different species to the degradation process. In total, 21 kinds of key genes and 13 enzymes were involved in the three modules of benzene transformation. Mycolicibacter icosiumassiliensis and Sphingobium sp. SCG-1 carried multiple functional genes critically involved in benzene biodegradation. These findings provide technical and theoretical support for the in-situ bioremediation of benzene-contaminated soil and waste gas reduction in landfills.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tong Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Qin L, Li J, Nestle Asamoah E, Zhao B, Chen W, Han J. New Porous Carbon Material Derived from Carbon Microspheres Assembled in Hollow Carbon Spheres and Its Application to Toluene Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6169-6177. [PMID: 37079769 DOI: 10.1021/acs.langmuir.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, a new porous carbon material adsorbent was prepared using carbon microspheres assembled in hollow carbon spheres (HCS) with a hydrothermal method. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy were used to characterize the adsorbents. It was found that the diameter of carbon microspheres derived from 0.1 mol/L glucose was about 130 nm, which could be inserted inside HCS (pore size was 370-450 nm). The increase in glucose concentration would promote the diameter of carbon microspheres (CSs), and coarse CSs could not be loaded in the mesopores or macropores of HCS. Thus, the C0.1@HCS adsorbent had the highest Brunauer-Emmett-Teller surface area (1945 m2/g) and total pore volume (1.627 cm3/g). At the same time, C0.1@HCS posed a suitable ratio of micropores and mesopores, which could provide adsorption sites and volatile organic compound diffusion channels. Moreover, oxygen-containing functional groups -OH and C═O in CSs were also introduced into HCS, and the adsorption capacity and regenerability performance of the adsorbents were improved. The dynamic adsorption capacity of C0.1@HCS for toluene reached 813 mg/g, and the Bangham model was more suitable for describing the toluene adsorption process. The adsorption capacity was stably kept above 770 mg/g after eight adsorption-desorption cycles.
Collapse
Affiliation(s)
- Linbo Qin
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
- Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Jiuli Li
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Ebenezer Nestle Asamoah
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Bo Zhao
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
- Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Wangsheng Chen
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
- Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Jun Han
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
- Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| |
Collapse
|
3
|
Mendoza-Burguete Y, de la Luz Pérez-Rea M, Ledesma-García J, Campos-Guillén J, Ramos-López MA, Guzmán C, Rodríguez-Morales JA. Global Situation of Bioremediation of Leachate-Contaminated Soils by Treatment with Microorganisms: A Systematic Review. Microorganisms 2023; 11:microorganisms11040857. [PMID: 37110280 PMCID: PMC10145224 DOI: 10.3390/microorganisms11040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This systematic review presents the current state of research in the last five years on contaminants in soils, especially in leachates from solid waste landfills, with emphasis on biological remediation. In this work, the pollutants that can be treated by microorganisms and the results obtained worldwide were studied. All the data obtained were compiled, integrated, and analyzed by soil type, pollutant type, bacterial type, and the countries where these studies were carried out. This review provides reliable data on the contamination of soils worldwide, especially soils contaminated by leachate from municipal landfills. The extent of contamination, treatment objectives, site characteristics, cost, type of microorganisms to be used, and time must be considered when selecting a viable remediation strategy. The results of this study can help develop innovative and applicable methods for evaluating the overall contamination of soil with different contaminants and soil types. These findings can help develop innovative, applicable, and economically feasible methods for the sustainable management of contaminated soils, whether from landfill leachate or other soil types, to reduce or eliminate risk to the environment and human health, and to achieve greater greenery and functionality on the planet.
Collapse
|
4
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
5
|
Wang H, Sun S, Nie L, Zhang Z, Li W, Hao Z. A review of whole-process control of industrial volatile organic compounds in China. J Environ Sci (China) 2023; 123:127-139. [PMID: 36521978 DOI: 10.1016/j.jes.2022.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) play an important role in the formation of ground-level ozone and secondary organic aerosol (SOA), and they have been key issues in current air pollution prevention and control in China. Considerable attention has been paid to industrial activities due to their large and relatively complex VOCs emissions. The present research aims to provide a comprehensive review on whole-process control of industrial VOCs, which mainly includes source reduction, collection enhancement and end-pipe treatments. Lower VOCs materials including water-borne ones are the keys to source substitution in industries related to coating and solvent usage, leak detection and repair (LDAR) should be regarded as an efficient means of source reduction in refining, petrochemical and other chemical industries. Several types of VOCs collection methods such as gas-collecting hoods, airtight partitions and others are discussed, and airtight collection at negative pressure yields the best collection efficiency. Current end-pipe treatments like UV oxidation, low-temperature plasma, activated carbon adsorption, combustion, biodegradation, and adsorption-combustion are discussed in detail. Finally, several recommendations are made for future advanced treatment and policy development in industrial VOCs emission control.
Collapse
Affiliation(s)
- Hailin Wang
- Beijing Key Laboratory for Urban Atmospheric VOCs Pollution Control and Technology Application, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Shumei Sun
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Lei Nie
- Beijing Key Laboratory for Urban Atmospheric VOCs Pollution Control and Technology Application, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Wenpeng Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
6
|
Wang Q, Gu X, Tang S, Mohammad A, Singh DN, Xie H, Chen Y, Zuo X, Sun Z. Gas transport in landfill cover system: A critical appraisal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116020. [PMID: 36104890 DOI: 10.1016/j.jenvman.2022.116020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Landfill gas (LFG) emission is gaining more attention from the scientific fraternity and policymakers recently due to its threat to the atmosphere and human health of the populace living in surrounding premises. Though landfill cover (LFC) (viz., daily, intermittent and final cover) is widely used by landfill operators to mitigate or reduce these emissions, their overall performance is still under question. A critical analysis of available literature, primarily pertaining to (i) the composition of the landfill gases and their migration in the LFC system, (ii) experimental and mathematical investigations of the transport mechanism of gas and (iii) the impact of additives to cover soils on transport and fate of gas, has been conducted and presented in this manuscript. Investigation of the efficiency of modified soil was mainly focused on laboratory test. More field tests and application of amended cover soils should be conducted and promoted further. Studies on nitrous oxide and emerging pollutants, including poly-fluoroalkyl substances transport in landfill cover system are limited and need further research. The transport mechanisms of these unconventional contaminants should be considered regarding the selection of LFC materials including geomembrane and geosynthetic clay liners. The existing analytical and numerical models can provide a basic understanding of LFG transport mechanisms and are able to predict the migration behaviour of LFG; however, there are still knowledge gaps concerning the interaction between different species of the gas molecule when modeling multi-component gas transport. Gas transport through fractured cover should also be considered when evaluating LFG emission in the future. Simplified design method for landfill cover system regarding LFG emission based on analytical models should be proposed. Overall, mathematical models combined with experiments can facilitate more visualized and intensive insights, which would be instrumental in devising climate adaptive landfill covers.
Collapse
Affiliation(s)
- Qiao Wang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China
| | - Xiting Gu
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Architectural Design and Research Institute of Zhejiang University Co. Ltd, 148 Tianmushan Road, Hangzhou, China
| | - Suqin Tang
- Hangzhou Environmental Group, 138-1 Linban Road, Hangzhou, 310022, China
| | - Arif Mohammad
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Haijian Xie
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China; College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yun Chen
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China; Architectural Design and Research Institute of Zhejiang University Co. Ltd, 148 Tianmushan Road, Hangzhou, China
| | - Xinru Zuo
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China; College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Zhilin Sun
- Ocean College, Zhejiang University, Zheda Road, Zhoushan, 316021, China; College of Hydraulic Engineering and Architecture, Tarim University, Alaer, 843300, China
| |
Collapse
|
7
|
Jiang J, Wang Y, Yu D, Yao X, Han J, Cheng R, Cui H, Yan G, Zhang X, Zhu G. Garbage enzymes effectively regulated the succession of enzymatic activities and the bacterial community during sewage sludge composting. BIORESOURCE TECHNOLOGY 2021; 327:124792. [PMID: 33561791 DOI: 10.1016/j.biortech.2021.124792] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated nitrogen transformation, enzymatic activities and bacterial succession during sewage sludge composting with and without garbage enzymes (GE and CK, respectively). The results showed that GE addition significantly increased fluorescein diacetate hydrolase (FDA), cellulase, and nitrogenase activities during the composting process. GE addition reduced the cumulative NH3 emissions by 66.5%, increased the peak NH4-N content by 26.3% and increased the total nitrogen (TN) content of the end compost by 39.2% compared to CK. Microbiological analysis revealed that GE addition significantly increased the relative abundance of Firmicutes during the thermophilic and cooling phases relative to CK. The selected factors affected the bacterial community composition in the following order: NH4-N > TOC > FDA > TN > C/N. Network analysis also showed that the enzymes were secreted mainly by Bacillus and norank_f_Caldilineaceae in GE, while they were secreted primarily by norank_f_Methylococcaceae in CK during the composting process.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xing Yao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jin Han
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Ronghui Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Huilin Cui
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xin Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|