1
|
Huang L, Zhao X, Wu K, Liang C, Liu J, Yang H, Yin F, Wang C, Yang B, Zhang W. Enhancing biomass and lipid accumulation by a novel microalga for unsterilized piggery biogas slurry remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31097-31107. [PMID: 38625472 DOI: 10.1007/s11356-024-33179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The cost and efficiency of an algal-BS treatment system are determined by the specific microalgal species and BS pretreatment method. This study examines the growth of a novel algae Chlorella sp. YSD-2 and the removal of nutrients from the BS using different pretreatment methods, including dilution ratio and sterilization. The highest biomass production (1.84 g L-1) was achieved in the 1:2 unsterilized biogas slurry, which was 2.03 times higher than that in the sterilized group, as well as higher lipid productivity (17.29 mg L-1 d-1). Nevertheless, the sterilized biogas slurry at a 1:1 dilution ratio exhibited the most notable nutrient-removal efficiency, with COD at 71.97%, TP at 91.32%, and TN at 88.80%. Additionally, the analysis of 16S rRNA sequencing revealed a significant alteration in the indigenous bacterial composition of the biogas slurry by microalgal treatment, with Proteobacteria and Cyanobacteria emerging as the predominant phyla, and unidentified_Cyanobacteria as the primary genus. These findings suggest that Chlorella sp. YSD-2 exhibits favorable tolerance and nutrient-removal capabilities in unsterilized, high-strength biogas slurry, along with high productivity of biomass and lipids. Consequently, these results offer a theoretical foundation for the development of an efficient and economically viable treatment method for algal-BS.
Collapse
Affiliation(s)
- Li Huang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Faculty of Environment and Chemical Engineering, Kunming Metallurgy College, Kunming, 650000, People's Republic of China
| | - Xingling Zhao
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Kai Wu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Chengyue Liang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Jing Liu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Hong Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Fang Yin
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Changmei Wang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Bin Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Wudi Zhang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China.
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China.
| |
Collapse
|
2
|
Scarponi P, Caminiti V, Bravi M, Izzo FC, Cavinato C. Coupling anaerobic co-digestion of winery waste and waste activated sludge with a microalgae process: Optimization of a semi-continuous system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:300-309. [PMID: 38086294 DOI: 10.1016/j.wasman.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
Wine production represents one of the most important agro-industrial sectors in Italy. Wine lees are the most significant waste in the winery industry and have high disposal and storage costs and few applications within the circular economy. In this study, anaerobic digestion and a microalgae coupled process was studied in order to treat wine lees and waste activated sludge produced within the same facility, with the aim of producing energy and valuable microalgae biomass that could be processed to recover biofuel or biostimulant. Chlorella vulgaris was cultivated on liquid digestate in a semi-continuous system without biomass recirculation. The best growth and phytoremediation performance were achieved applying a hydraulic retention time (HRT) of 20 days with a stable dry weight, lipid and protein storage of 1.85 ± 0.02 g l-1, 33.48 ± 7.54 % and 57.85 ± 10.14 % respectively. Lipid characterization highlighted the potential use in high quality biodiesel production, according to EN14214 (<12 % v/v linolenic acid). The microalgae reactor's liquid output showed high removal of ammonia (95.72 ± 2.10 %), but low organic soluble matter reduction. Further semi-continuous process optimization was carried out by increasing the time between digestate feeding and biomass recovery at HRT 10. These operative changes avoided biomass wash-out and provided a stable phytoremediation of the digestate with 84.58 ± 4.02 % ammonia removal, 33.01 ± 1.44 % sCOD removal, 38.06 ± 2.65 % of polyphenols removal.
Collapse
Affiliation(s)
- P Scarponi
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - V Caminiti
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, viale dell'Università, 16, 35020 Legnaro, Italy
| | - M Bravi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana, 18, 00184 Roma, Italy
| | - F C Izzo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| |
Collapse
|
3
|
Lacroux J, Llamas M, Dauptain K, Avila R, Steyer JP, van Lis R, Trably E. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161136. [PMID: 36587699 DOI: 10.1016/j.scitotenv.2022.161136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation. However, the technoeconomic viability of this process needs to be enhanced by the valorization of the residual streams generated. The use of dark fermentation effluents as low-cost carbon source for microalgae cultivation arises as an innovative approach for bioproducts generation (e.g., biodiesel, bioactive compounds, pigments) that maximizes the carbon recovery. In a biorefinery context, after value-added product extraction, the spent microalgae biomass can be further valorised as feedstock for biohydrogen production. This integrated process would play a key role in the transition towards a circular economy. This review covers recent advances in microalgal cultivation on dark fermentation effluents (DFE). BioH2 via dark fermentation processes and the involved metabolic pathways are detailed with a special focus on the main aspects affecting the effluent composition. Interesting traits of microalgae and current approaches to solve the challenges associated to the integration of dark fermentation and microalgae cultivation are also discussed.
Collapse
Affiliation(s)
- Julien Lacroux
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Mercedes Llamas
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Edificio 46., Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Kevin Dauptain
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | | | - Robert van Lis
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Eric Trably
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
4
|
Antioxidant Activity and Kinetic Characterization of Chlorella vulgaris Growth under Flask-Level Photoheterotrophic Growth Conditions. Molecules 2022; 27:molecules27196346. [PMID: 36234880 PMCID: PMC9570526 DOI: 10.3390/molecules27196346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained at the flask level, which could then be scaled to the photobioreactor level. As a methodology, a screening design was applied, which evaluated three factors: type of substrate (sodium acetate or glycerol); substrate concentration; and exposure-time to red light (photoperiod: 16:8 and 8:16 light/darkness). The response variables were: cell division; biomass; substrate consumption; and antioxidant activity in intracellular metabolites (ABTS•+ and DPPH•). As a result, the sodium acetate condition of 0.001 g/L, in a photoperiod of 16 h of light, presented a doubling time (Td = 4.84 h) and a higher rate of division (σ = 0.20 h−1), having a final biomass concentration of 2.075 g/L. In addition, a higher concentration of metabolites with antioxidant activity was found in the sodium acetate (0.629 Trolox equivalents mg/L ABTS•+ and 0.630 Trolox equivalents mg/L DPPH•). For the glycerol, after the same photoperiod (16 h of light and 8 h of darkness), the doubling time (Td) was 4.63 h, with a maximum division rate of σ = 0.18 h−1 and with a biomass concentration at the end of the kinetics of 1.4 g/L. Sodium acetate under long photoperiods, therefore, is ideal for the growth of C. vulgaris, which can then be scaled to the photobioreactor level.
Collapse
|