1
|
Wang Y, Zhang X, Chen Y. The enhancement of caproic acid synthesis from organic solid wastes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123215. [PMID: 39504670 DOI: 10.1016/j.jenvman.2024.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Organic solid waste (OSW) significantly harms the environment and threatens human health. Producing caproic acid (CA) from OSW presents a cost-effective, sustainable, and resource-efficient solution. This study comprehensively examines the various methods for synthesizing CA from OSW, focusing on waste material selection, pretreatment processes to improve dissolution and hydrolysis of OSW, key substrates, and optimization strategies. Using OSW resources has been extensively studied and applied across numerous industries, presenting a promising solution for reducing environmental pollution. This study provides insights into CA synthesis pathways and substrate selection while emphasizing the optimization of CA production from OSW. It also highlights key areas for future research.
Collapse
Affiliation(s)
- Yidan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
2
|
Liao Q, Sun L, Lu H, Qin X, Liu J, Zhu X, Li XY, Lin L, Li RH. Iron driven organic carbon capture, pretreatment, recovery and upgrade in wastewater: Process technologies, mechanisms, and implications. WATER RESEARCH 2024; 263:122173. [PMID: 39111213 DOI: 10.1016/j.watres.2024.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization. Therefore, re-examining the application of iron in existing wastewater carbon processes is particularly important. In this review, we investigate the latest research progress on iron for wastewater carbon flow restructuring. During the iron-based chemically enhanced primary treatment (CEPT) process, organic carbon is captured into sludge and its bioavailability is enhanced through iron-based advanced oxidation processes (AOP) pretreatment, further being recovered or upgraded to value-added products in anaerobic biological processes. We discuss the roles and mechanisms of iron in CEPT, AOP, anaerobic biological processes, and biorefining in driving organic carbon conversion. The dosage of iron, as a critical parameter, significantly affects the recovery and utilization of sludge carbon resources, particularly by promoting effective electron transfer. We propose a pathway for beneficial conversion of wastewater organic carbon driven by iron and analyze the benefits of the main products in detail. Through this review, we hope to provide new insights into the application of iron chemicals and current wastewater treatment models.
Collapse
Affiliation(s)
- Quan Liao
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lianpeng Sun
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Hui Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xianglin Qin
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junhong Liu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinzhe Zhu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ruo-Hong Li
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
3
|
Zhao J, Ma H, Gao M, Qian D, Wang Q, Shiung Lam S. Advancements in medium chain fatty acids production through chain elongation: Key mechanisms and innovative solutions for overcoming rate-limiting steps. BIORESOURCE TECHNOLOGY 2024; 408:131133. [PMID: 39033828 DOI: 10.1016/j.biortech.2024.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The depletion of fossil fuels has prompted an urgent search for alternative chemicals from renewable sources. Current technology in medium chain fatty acids (MCFAs) production though chain elongation (CE) is becoming increasingly sustainable, hence the motivation for this review, which provides the detailed description, insights and analysis of the metabolic pathways, substrates type, inoculum and fermentation process. The main rate-limiting steps of microbial MCFAs production were comprehensively revealed and the corresponding innovative solutions were also critically evaluated. Innovative strategies such as substrate pretreatment, electrochemical regulation, product separation, fermentation parameter optimization, and electroactive additives have shown significant advantages in overcoming the rate-limiting steps. Furthermore, novel regulatory strategies such as quorum sensing and electronic bifurcation are expected to further increase the MCFAs yield. Finally, the techno-economic analysis was carried out, and the future research focuses were also put forward.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
4
|
Biodigestion System Made of Polyethylene and Polystyrene Insulator for Dog Farm (on the Example of the Republic of Chile). LIFE (BASEL, SWITZERLAND) 2022; 12:life12122039. [PMID: 36556404 PMCID: PMC9785096 DOI: 10.3390/life12122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Anaerobic digestion is a system that can have a high environmental impact through the use of different wastes to obtain biogas and its consequent use for the generation of renewable energy. The objective of this study was to implement a polyethylene biodigester, using polystyrene for thermal insulation in a dog kennel, using canine feces collected in the same place during a period of 5 months to obtain biogas and energy. The results indicated that biogas production started on day 30 and stopped during the winter period with low temperatures; therefore, from day 54 onwards, equine manure was added to continue producing biogas. Although biogas was obtained, the biodigester did not function optimally, due to the fact that the materials used in its construction did not provide efficient insulation from the low external temperatures; the low C/N ratio of the canine feces, which led to a reduction in the processing of the methanogenic bacteria; and the low amount of feces collected for use. In general, the use of a biodigester can provide a tool for the biological processing and management of organic waste, yielding a cumulative source of renewable energy and ensuring environmental safety.
Collapse
|