1
|
Zheng SH, Wang XT, Gu ZY, Lü HY, Li S, Zhang XY, Cao JM, Guo JZ, Wu XL. Direct and rapid thermal shock for recycling spent graphite in lithium-ion batteries. J Colloid Interface Sci 2024; 667:111-118. [PMID: 38626654 DOI: 10.1016/j.jcis.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Due to the rapid increase in the number of spent lithium-ion batteries, there has been a growing interest in the recovery of degraded graphite. In this work, a rapid thermal shock (RTS) strategy is proposed to regenerate spent graphite for use in lithium-ion batteries. The results of structural and morphological characterization demonstrate that the graphite is well regenerated by the RTS process. Additionally, an amorphous carbon layer forms and coats onto the surface of the graphite, contributing to excellent rate performance. The regenerated graphite (RG-1000) displays excellent rate performance, with capacities of 413 mAh g-1 at 50 mA g-1 and 102.1 mAh g-1 at 1000 mA g-1, respectively. Furthermore, it demonstrates long-term cycle stability, maintaining a capacity of 80 mAh g-1 at 1000 mA g-1 with a capacity retention of 78.4 % after 600 cycles. This RTS method enables rapid and efficient regeneration of spent graphite anodes for lithium-ion batteries, providing a facile and environmentally friendly strategy for their direct regeneration.
Collapse
Affiliation(s)
- Shuo-Hang Zheng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Hong-Yan Lü
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Shuying Li
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
| | - Xin-Yi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, PR China.
| |
Collapse
|
2
|
Guo M, Zhang B, Gao M, Deng R, Zhang Q. A review on spent Mn-containing Li-ion batteries: Recovery technologies, challenges, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120454. [PMID: 38412733 DOI: 10.1016/j.jenvman.2024.120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Mn-containing Li-ion batteries have become primary power sources for electronic devices and electric vehicles because of their high-energy density, extended cycle life, low cost, and heightened safety. In recent years, Li-ion batteries (LIBs) have undergone rapid updates, paralleling the swift advancement of the lithium battery industry, resulting in a growing accumulation of LIB scraps annually, necessitating comprehensive recovery strategies. This article reviews the recent progress in recovering spent Mn-containing LIBs (SM-LIBs), specifically focusing on LiMn2O4 and ternary LiCoxMnyNizO2 (NCM). Initially, the study analyzes the current resource profile of SM-LIBs and elucidates their service mechanisms. Subsequently, the study explores the recovery of SM-LIBs, discussing various methods such as the hydrometallurgical approach, combined pyrolytic treatment-wet leaching process, bioleaching pathway, and electrochemical extraction. These discussions include recovery processes, reaction principles, and technological features. In addition, this study evaluates the potential applications of these recovery technologies, considering aspects such as complexity, economic viability, energy consumption, environmental sustainability, and scalability. Finally, it summarizes the challenges associated with the comprehensive recovery and resource utilization of SM-LIBs and offers insights into future directions.
Collapse
Affiliation(s)
- Mengwei Guo
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Bo Zhang
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Mingyuan Gao
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
| | - Rongrong Deng
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming, 650093, Yunnan, China.
| |
Collapse
|
3
|
Zhang Z, Xiao J, Chen Y, Su F, Xu F, Zhong Q. Potential environmental and human health menace of spent graphite in lithium-ion batteries. ENVIRONMENTAL RESEARCH 2024; 244:117967. [PMID: 38109964 DOI: 10.1016/j.envres.2023.117967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
The growing demand for lithium-ion batteries for portable electronics and electric vehicles results in a booming lithium battery market, leading to a concomitant increase in spent graphite. This research investigated the potential impacts of spent graphite on environmental and human health using standardized toxicity extraction and Life Cycle Impact Assessment models. The spent graphite samples were classified as hazardous waste due to the average nickel content of 337.14 mg/L according to Chinese regulations. Besides, cadmium and fluorine were the other elements that exceeded the regulations threshold. Easily ignored aluminum and heavy metal cobalt are other harmful elements according to the results of Life Cycle Impact Assessments. All the metallic harmful elements mainly exist in a transferable state. Thermogravimetry infrared spectrometry coupled with mass spectrometry was employed to recognize the emitted gases and explore gas emission behavior. Inorganic gases of CO, H2S, SO2, SO3, oxynitride, HCl, and fluoride-containing gases were detected. Sulfur-containing gases released from spent graphite were contributed by the residual sulfuric acid after leaching. The correlation between the evolution of emitted gases and the heating schedule was established simultaneously. The research comprehensively illustrates the pollution of spent graphite and provides assistance for the design of green recycling schemes for spent graphite.
Collapse
Affiliation(s)
- Zhenhua Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jin Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Center of Low-carbon Nonferrous Metallurgy, Central South University, Changsha, 410083, China
| | - Yiwen Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Feiyang Su
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Fanghong Xu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qifan Zhong
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
4
|
Tian H, Graczyk-Zajac M, Kessler A, Weidenkaff A, Riedel R. Recycling and Reusing of Graphite from Retired Lithium-ion Batteries: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308494. [PMID: 38102959 DOI: 10.1002/adma.202308494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/28/2023] [Indexed: 12/17/2023]
Abstract
The proliferation of rechargeable lithium-ion batteries (LIBs) over the past decade has led to a significant increase in the number of electric vehicles (EVs) powered by these batteries reaching the end of their lifespan. With retired EVs becoming more prevalent, recycling and reusing their components, particularly graphite, has become imperative as the world transitions toward electric mobility. Graphite constitutes ≈20% of LIBs by weight, making it a valuable resource to be conserved. This review presents an in-depth analysis of the current global graphite mining landscape and explores potential opportunities for the "second life" of graphitefrom depleted LIBs. Various recycling and reactivation technologies in both industry and academia are discussed, along with potential applications for recycled graphite forming a vital aspect of the waste management hierarchy. Furthermore, this review addresses the future challenges faced by the recycling industry in dealing with expired LIBs, encompassing environmental, economic, legal, and regulatory considerations. In conclusion, this review provides a comprehensive overview of the developments in recycling and reusing graphite from retired LIBs, offering valuable insights for forthcoming large-scale recycling efforts.
Collapse
Affiliation(s)
- Honghong Tian
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
- EnBW Energie Baden-Württemberg AG, Durlacher Allee 93, 76131, Karlsruhe, Germany
| | - Magdalena Graczyk-Zajac
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
- EnBW Energie Baden-Württemberg AG, Durlacher Allee 93, 76131, Karlsruhe, Germany
| | - Alois Kessler
- EnBW Energie Baden-Württemberg AG, Durlacher Allee 93, 76131, Karlsruhe, Germany
| | - Anke Weidenkaff
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
- Fraunhofer Research Institution for Materials Recycling and Resource Strategy (IWKS), Brentanostraße 2a, 63755, Alzenau, Germany
| | - Ralf Riedel
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Ji H, Wang J, Ma J, Cheng HM, Zhou G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem Soc Rev 2023; 52:8194-8244. [PMID: 37886791 DOI: 10.1039/d3cs00254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Advancement in energy storage technologies is closely related to social development. However, a significant conflict has arisen between the explosive growth in battery demand and resource availability. Facing the upcoming large-scale disposal problem of spent lithium-ion batteries (LIBs), their recycling technology development has become key. Emerging direct recycling has attracted widespread attention in recent years because it aims to 'repair' the battery materials, rather than break them down and extract valuable products from their components. To achieve this goal, a profound understanding of the failure mechanisms of spent LIB electrode materials is essential. This review summarizes the failure mechanisms of LIB cathode and anode materials and the direct recycling strategies developed. We systematically explore the correlation between the failure mechanism and the required repair process to achieve efficient and even upcycling of spent LIB electrode materials. Furthermore, we systematically introduce advanced in situ characterization techniques that can be utilized for investigating direct recycling processes. We then compare different direct recycling strategies, focussing on their respective advantages and disadvantages and their applicability to different materials. It is our belief that this review will offer valuable guidelines for the design and selection of LIB direct recycling methods in future endeavors. Finally, the opportunities and challenges for the future of battery direct recycling technology are discussed, paving the way for its further development.
Collapse
Affiliation(s)
- Haocheng Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Junxiong Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ma
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering & Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zhang L, Zhang Y, Xu Z, Zhu P. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13270-13291. [PMID: 37610371 DOI: 10.1021/acs.est.3c01369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the rise of the new energy vehicle industry represented by Tesla and BYD, the need for lithium-ion batteries (LIBs) grows rapidly. However, owing to the limited service life of LIBs, the large-scale retirement tide of LIBs has come. The recycling of spent LIBs has become an inevitable trend of resource recovery, environmental protection, and social demand. The low added value recovery of previous LIBs mostly used traditional metal extraction, which caused environmental damage and had high cost. Beyond metal extraction, the upcycling of spent LIBs came into being. In this work, we have outlined and particularly focus on sustainable upcycling technologies of toxic electrolyte, cathode, and anode from spent LIBs. For electrolyte, whether electrolyte extraction or decomposition, restoring the original electrolyte components or decomposing them into low-carbon energy conversion is the goal of electrolyte upcycling. Direct regeneration and preparation of advanced materials are the best strategies for cathodic upcycling with the advantages of cost and energy consumption, but challenges remain in industrial practice. The regeneration of advanced graphite-based materials and battery-grade graphite shows us the prospect of regeneration of anode. Furthermore, the challenges and future development of spent LIBs upcycling are summarized and discussed from technological and environmental perspectives.
Collapse
Affiliation(s)
- Lingen Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Tian H, Graczyk-Zajac M, De Carolis DM, Tian C, Ricohermoso EI, Yang Z, Li W, Wilamowska-Zawlocka M, Hofmann JP, Weidenkaff A, Riedel R. A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130607. [PMID: 37056017 DOI: 10.1016/j.jhazmat.2022.130607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
Graphite negative electrodes are unbeaten hitherto in lithium-ion batteries (LiBs) due to their unique chemical and physical properties. Thus, the increasing scarcity of graphite resources makes smart recycling or repurposing of discarded graphite particularly imperative. However, the current recycling techniques still need to be improved upon with urgency. Herein a facile and efficient hydrometallurgical process is reported to effectively regenerate aged (39.5 %, 75 % state-of-health, SOH) scrapped graphite (SG) from end-of-life lithium-ion batteries. Ultimately, the first cycle reversible capacity of SG1 (SOH = 39.5 %) improved from 266 mAh/g to 337 mAh/g while 330 mAh/g (98 %) remain after 100 cycles at 0.5 C. The reversible capacity for the first cycle of SG2 (SOH = 75 %) boosted from 335 mAh/g to 366 mAh/g with the capacity retention of 99.3 % after 100 cycles at 0.5 C, which is comparable with the benchmark commercial graphite. The regenerated graphites RG1 and RG2 exhibit excellent output characteristics even increasing the rate up to 4 C. This is the best rate level reported in the literature to date. Finally, the diffusion coefficient of Li ions during deintercalation and intercalation in the regenerated graphites have been measured by galvanostatic intermittent titration technique (GITT), determining values 2 orders-of-magnitude higher than that of the spent counterparts. Taking advantage of the synergistic effect of acid leaching and heat treatment, this strategy provides a simple and up-scalable method to recycle graphitic anodes.
Collapse
Affiliation(s)
- Honghong Tian
- Dispersive Solids, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany.
| | - Magdalena Graczyk-Zajac
- Dispersive Solids, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany; EnBW Energie Baden-Württemberg AG, Durlacher Allee 93, 76131 Karlsruhe, Germany.
| | - Dario M De Carolis
- Dispersive Solids, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Chuanmu Tian
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Emmanuel Iii Ricohermoso
- Dispersive Solids, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Zhiwu Yang
- Qinghai Taifeng Pulead Lithium-Energy Technology Co., Ltd., Tongan Road 139, 810021 Xining, PR China
| | - Wei Li
- Dispersive Solids, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Monika Wilamowska-Zawlocka
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Anke Weidenkaff
- Fraunhofer IWKS, Rodenbacher Chaussee 4, 63457 Hanau, Germany; Materials and Resources, Department of Materials and Earth Sciences, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Ralf Riedel
- Dispersive Solids, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| |
Collapse
|