1
|
Deng J, Hu M, Cai Z, Yu W, Zhan L, Zhu X, Ke Q, Gao R, Zhou X, Liu H, Li J, Huang C. A Highly Stable, Multifunctional Janus Dressing for Treating Infected Wounds. Adv Healthc Mater 2024; 13:e2401345. [PMID: 38973206 DOI: 10.1002/adhm.202401345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Indexed: 07/09/2024]
Abstract
The limited and unstable absorption of excess exudate is a major challenge during the healing of infected wounds. In this study, a highly stable, multifunctional Janus dressing with unidirectional exudate transfer capacity is fabricated based on a single poly(lactide caprolactone) (PLCL). The success of this method relies on an acid hydrolysis reaction that transforms PLCL fibers from hydrophobic to hydrophilic in situ. The resulting interfacial affinity between the hydrophilic/phobic PLCL fibers endows the Janus structure with excellent unidirectional liquid transfer and high structural stability against repeated stretching, bending, and twisting. Various other functions, including wound status detection, antibacterial, antioxidant, and anti-inflammatory properties, are also integrated into the dressing by incorporating phenol red and epigallocatechin gallate. An in vivo methicillin-resistant Staphylococcus aureus-infected wound model confirms that the Janus dressing, with the capability to remove exudate from the infected site, not only facilitates epithelialization and collagen deposition, but also ensures low inflammation and high angiogenesis, thus reaching an ideal closure rate up to 98.4% on day 14. The simple structure, multiple functions, and easy fabrication of the dressing may offer a promising strategy for treating chronic wounds, rooted in the challenges of bacterial infection, excessive exudate, and persistent inflammation.
Collapse
Affiliation(s)
- Jixia Deng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Miao Hu
- Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Zhuyun Cai
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Wenhua Yu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lei Zhan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xueying Zhu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qinfei Ke
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rui Gao
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Honggang Liu
- Tiansheng Nonwoven Technology Co., Ltd, Zhejiang, 321035, China
| | - Juan Li
- Tiansheng Nonwoven Technology Co., Ltd, Zhejiang, 321035, China
| | - Chen Huang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Qin L, Li X, Ren G, Yuan R, Wang X, Hu Z, Ye C, Zou Y, Ding P, Zhang H, Cai Q. Closed-Loop Polymer-to-Polymer Upcycling of Waste Poly (Ethylene Terephthalate) into Biodegradable and Programmable Materials. CHEMSUSCHEM 2024; 17:e202301781. [PMID: 38409634 DOI: 10.1002/cssc.202301781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Poly(ethylene terephthalate) (PET), extensively employed in bottles, film, and fiber manufacture, has generated persistent environmental contamination due to its non-degradable nature. The resolution of this issue requires the conversion of waste PET into valuable products, often achieved through depolymerization into monomers. However, the laborious purification procedures involved in the extraction of monomers pose challenges and constraints on the complete utilization of PET. Herein, a strategy is demonstrated for the polymer-to-polymer upcycling of waste PET into high-value biodegradable and programmable materials named PEXT. This process involves reversible transesterifications dependent on ester bonds, wherein commercially available X-monomers from aliphatic diacids and diols are introduced, utilizing existing industrial equipment for complete PET utilization. PEXT features a programmable molecular structure, delivering tailored mechanical, thermal, and biodegradation performance. Notably, PEXT exhibits superior mechanical performance, with a maximal elongation at break of 3419.2 % and a toughness of 270.79 MJ m-3. These characteristics make PEXT suitable for numerous applications, including shape-memory materials, transparent films, and fracture-resistant stretchable components. Significantly, PEXT allows closed-loop recycling within specific biodegradable analogs by reprograming PET or X-monomers. This strategy not only offers cost-effective advantages in large-scale upcycling of waste PET into advanced materials but also demonstrates its enormous prospect in environmental conservation.
Collapse
Affiliation(s)
- Lidong Qin
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoxu Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Geng Ren
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Rongyan Yuan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Xinyu Wang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Zexu Hu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Chenwu Ye
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Yangyang Zou
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Peiqing Ding
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Hongjie Zhang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiuquan Cai
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
3
|
Keith M, Koller M, Lackner M. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers (Basel) 2024; 16:1621. [PMID: 38931972 PMCID: PMC11207349 DOI: 10.3390/polym16121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Today, 98% of all plastics are fossil-based and non-biodegradable, and globally, only 9% are recycled. Microplastic and nanoplastic pollution is just beginning to be understood. As the global demand for sustainable alternatives to conventional plastics continues to rise, biobased and biodegradable plastics have emerged as a promising solution. This review article delves into the pivotal concept of carbon recycling as a pathway towards achieving a zero-waste future through the production and utilization of high-value bioplastics. The review comprehensively explores the current state of bioplastics (biobased and/or biodegradable materials), emphasizing the importance of carbon-neutral and circular approaches in their lifecycle. Today, bioplastics are chiefly used in low-value applications, such as packaging and single-use items. This article sheds light on value-added applications, like longer-lasting components and products, and demanding properties, for which bioplastics are increasingly being deployed. Based on the waste hierarchy paradigm-reduce, reuse, recycle-different use cases and end-of-life scenarios for materials will be described, including technological options for recycling, from mechanical to chemical methods. A special emphasis on common bioplastics-TPS, PLA, PHAs-as well as a discussion of composites, is provided. While it is acknowledged that the current plastics (waste) crisis stems largely from mismanagement, it needs to be stated that a radical solution must come from the core material side, including the intrinsic properties of the polymers and their formulations. The manner in which the cascaded use of bioplastics, labeling, legislation, recycling technologies, and consumer awareness can contribute to a zero-waste future for plastics is the core topics of this article.
Collapse
Affiliation(s)
- Matthew Keith
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria;
| | - Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands
- University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
4
|
Brió Pérez M, Wurm FR, de Beer S. On the Road to Circular Polymer Brushes: Challenges and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7249-7256. [PMID: 38556745 PMCID: PMC11008239 DOI: 10.1021/acs.langmuir.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Polymer brushes are unique surface coatings that have been of high interest in research for the past decades due to their covalent tethering to surfaces and the broad spectrum of polymers that can be grafted to or grafted from various surfaces. Modification of surfaces with brushes may provide lubricious and/or antifouling properties, and they can also potentially be used in many application fields due to their high responsiveness toward certain stimuli. Generally, polymer brushes are long-lasting coatings, while their end-of-life has to date largely been neglected. Therefore, it is important to consider additional design methodologies to produce circular brushes, which will degrade after a certain period of time such that surfaces can be reused, and the potentially obtained monomers may be used again to synthesize new brushes. In this Perspective, we aim to tackle and understand the challenges to translate the knowledge on degradation and chemical recycling of bulk polymers toward circular polymer brushes. We summarized the recent developments on (bio)degradable polymer brushes and the challenges that are to be tackled toward their potential implementation as circular coatings.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Song T, Zhang F, Chen Q, Tao Y, Chang W, Xia W, Ding W, Jin J. Acceleration of the biodegradation of cationic polyacrylamide by the coupling effect of thermophilic microorganisms and high temperature in hyperthermophilic composting. Bioprocess Biosyst Eng 2024; 47:403-415. [PMID: 38421394 DOI: 10.1007/s00449-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
As a flocculant of sewage sludge, cationic polyacrylamide (CPAM) enters the environment with sludge and exists for a long time, posing serious threats to the environment. Due to the environmental friendliness and high efficiency in the process of organic solid waste treatment, hyperthermophilic composting (HTC) has received increasing attention. However, it is still unclear whether the HTC process can effectively remove CPAM from sludge. In this study, the effects of HTC and conventional thermophilic composting (CTC) on CPAM in sludge were compared and analyzed. At the end of HTC and CTC, the concentrations of CPAM were 278.96 mg kg-1 and 533.89 mg kg-1, respectively, and the removal rates were 72.17% and 46.61%, respectively. The coupling effect of thermophilic microorganisms and high temperature improved the efficiency of HTC and accelerated the biodegradation of CPAM. The diversity and composition of microbial community changed dramatically during HTC. Geobacillus, Thermobispora, Pseudomonas, Brevundimonas, and Bacillus were the dominant bacteria responsible for the high HTC efficiency. To our knowledge, this is the first study in which CPAM-containing sludge is treated using HTC. The ideal performance and the presence of key microorganisms revealed that HTC is feasible for the treatment of CPAM-containing sludge.
Collapse
Affiliation(s)
- Tianwen Song
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Fan Zhang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Qu Chen
- Medical College, Qingdao Binhai University, Qingdao, 266555, China
| | - Yinglu Tao
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wei Chang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wenxiang Xia
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jiafeng Jin
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China
| |
Collapse
|
6
|
Furgier V, Root A, Heinmaa I, Zamani A, Åkesson D. Development and Characterisation of Composites Prepared from PHBV Compounded with Organic Waste Reinforcements, and Their Soil Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:768. [PMID: 38592008 PMCID: PMC10856691 DOI: 10.3390/ma17030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biobased and biodegradable polymer. This polymer is considered promising, but it is also rather expensive. The objective of this study was to compound PHBV with three different organic fillers considered waste: human hair waste (HHW), sawdust (SD) and chitin from shrimp shells. Thus, the cost of the biopolymer is reduced, and, at the same time, waste materials are valorised into something useful. The composites prepared were characterised by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and scanning electron micrograph (SEM). Tests showed that chitin and HHW did not have a reinforcing effect on tensile strength while the SD increased the tensile strength at break to a certain degree. The biodegradation of the different composites was evaluated by a soil burial test for five months. The gravimetric test showed that neat PHBV was moderately degraded (about 5% weight loss) while reinforcing the polymer with organic waste clearly improved the biodegradation. The strongest biodegradation was achieved when the biopolymer was compounded with HHW (35% weight loss). The strong biodegradation of HHW was further demonstrated by characterisation by Fourier-transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (NMR). Characterisation by SEM showed that the surfaces of the biodegraded samples were eroded.
Collapse
Affiliation(s)
- Valentin Furgier
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; (V.F.); (A.Z.)
| | - Andrew Root
- MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland;
| | - Ivo Heinmaa
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia;
| | - Akram Zamani
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; (V.F.); (A.Z.)
| | - Dan Åkesson
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; (V.F.); (A.Z.)
| |
Collapse
|
7
|
Brió Pérez M, Hempenius MA, de Beer S, Wurm FR. Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth. Macromolecules 2023; 56:8856-8865. [PMID: 38024158 PMCID: PMC10653273 DOI: 10.1021/acs.macromol.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Polymer brushes are widely used as versatile surface modifications. However, most of them are designed to be long-lasting by using nonbiodegradable materials. This generates additional plastic waste and hinders the reusability of substrates. To address this, we present a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization (SI-ROP) from stable PGMA-based macroinitiators. This yields polyester brush coatings (up to 50 nm in thickness) that hydrolyze with controlled patterns and can be regrown on the same substrate after degradation. We chose polyesters of different hydrolytic stability and degradation mechanism, i.e., poly(lactic acid) (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB), which are grown from poly(glycidyl methacrylate) (PGMA)-based macroinitiators for strong surface binding and initiating site reuse. Brush degradation is monitored via thickness changes in pH-varied buffer solutions and seawater with PHB brushes showing rapid degradation in all solutions. PLA and PCL brushes show higher stability in solutions of up to pH 8, while all coatings fully degrade after 14 days in seawater. These brushes offer surface modifications with well-defined degradation patterns that can be regrown after degradation, making them an interesting alternative to (meth)acrylate-based, nondegradable polymers brushes.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mark A. Hempenius
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Gasparyan KG, Tyubaeva PM, Varyan IA, Vetcher AA, Popov AA. Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials. Polymers (Basel) 2023; 15:polym15092042. [PMID: 37177186 PMCID: PMC10181107 DOI: 10.3390/polym15092042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy. The results showed rapid decomposition of the fibrous material and also showed how the surface of the material affects the rate of biodegradation and the mechanical properties of the material. It was found that maximum strength decreased by 91% in the fibrous material and by 49% in the film. Additionally, the DSC method showed that the crystallinity of the fiber after exposure to the soil decreased. It was established that the rate of degradation is influenced by different factors, including the surface area of the material and its susceptibility to soil microorganisms. The results obtained are of great importance for planning the structure of features in the manufacture of biopolymer consumer products in areas such as medicine, packaging, filters, protective layers and coatings, etc. Therefore, an understanding of the biodegradation mechanisms of PHB could lead to the development of effective medical devices, packaging materials and different objects with a short working lifespan.
Collapse
Affiliation(s)
- Kristina G Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Polina M Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Ivetta A Varyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Alexandre A Vetcher
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Anatoly A Popov
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| |
Collapse
|
9
|
Bher A, Cho Y, Auras R. Boosting Degradation of Biodegradable Polymers. Macromol Rapid Commun 2023; 44:e2200769. [PMID: 36648129 DOI: 10.1002/marc.202200769] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Biodegradation of polymers in composting conditions is an alternative end-of-life (EoL) scenario for contaminated materials collected through the municipal solid waste management system, mainly when mechanical or chemical methods cannot be used to recycle them. Compostability certification requirements are time-consuming and expensive. Therefore, approaches to accelerate the biodegradation of these polymers in simulated composting conditions can facilitate and speed up the evaluation and selection of potential compostable polymer alternatives and inform faster methods to biodegrade these polymers in real composting. This review highlights recent trends, challenges, and future strategies to accelerate biodegradation by modifying the polymer properties/structure and the compost environment. Both abiotic and biotic methods show potential for accelerating the biodegradation of biodegradable polymers. Abiotic methods, such as the incorporation of additives, reduction of molecular weight, reduction of size and reactive blending, are potentially the most straightforward, providing a level of technology that allows for easy adoption and adaptability. Novel methods, including the concept of self-immolative and triggering the scission of polymer chains in specific conditions, are increasingly sought. In terms of biotic methods, dispersion/encapsulation of enzymes during the processing step, biostimulation of the environment, and bioaugmentation with specific microbial strains during the biodegradation process are promising to accelerate biodegradation.
Collapse
Affiliation(s)
- Anibal Bher
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Yujung Cho
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|