1
|
Zhong H, Liu G, Jiang Y, Brusseau ML, Liu Z, Liu Y, Zeng G. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids Surf B Biointerfaces 2015; 139:244-8. [PMID: 26722821 DOI: 10.1016/j.colsurfb.2015.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 11/26/2022]
Abstract
The success of effective bioaugmentation processes for remediation of soil and groundwater contamination requires effective transport of the injected microorganisms in the subsurface environment. In this study, the effect of low concentrations of monorhamnolipid biosurfactant solutions on transport of Pseudomonas aeruginosa in an ideal porous medium (glass beads) with hydrophilic or hydrophobic surfaces was investigated by conducting miscible-displacement experiments. Transport behavior was examined for both glucose-grown and hexadecane-grown cells, with low and high surface hydrophobicity, respectively. A clean-bed colloid deposition model was used for determination of deposition rate coefficients. Results show that cells with high surface hydrophobicity exhibit greater retention than cells with low surface hydrophobicity. Rhamnolipid affects cell transport primarily by changing cell surface hydrophobicity, with an additional minor effect by increasing solution ionic strength. There is a good linear relation between k and rhamnolipid-regulated cell surface hydrophobicity presented as bacterial-adhesion-to-hydrocarbon (BATH) rate of cells (R(2)=0.71). The results of this study show the importance of hydrophobic interaction for transport of bacterial cells in silica-based porous media, and the potential of using low-concentration rhamnolipid solutions for facilitating bacterial transport in bioaugmentation efforts.
Collapse
Affiliation(s)
- Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721, United States.
| | - Guansheng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yongbing Jiang
- The Sericultural Research Institute of Hunan Province, Changsha 410127, China.
| | - Mark L Brusseau
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721, United States.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
2
|
Retention in treated wastewater affects survival and deposition of Staphylococcus aureus and Escherichia coli in sand columns. Appl Environ Microbiol 2015; 81:2199-205. [PMID: 25595758 DOI: 10.1128/aem.03740-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fate and transport of pathogenic bacteria from wastewater treatment facilities in the Earth's subsurface have attracted extensive concern over recent decades, while the impact of treated-wastewater chemistry on bacterial viability and transport behavior remains unclear. The influence of retention time in effluent from a full-scale municipal wastewater treatment plant on the survival and deposition of Staphylococcus aureus and Escherichia coli strains in sand columns was investigated in this paper. In comparison to the bacteria cultivated in nutrient-rich growth media, retention in treated wastewater significantly reduced the viability of all strains. Bacterial surface properties, e.g., zeta potential, hydrophobicity, and surface charges, varied dramatically in treated wastewater, though no universal trend was found for different strains. Retention in treated wastewater effluent resulted in changes in bacterial deposition in sand columns. Longer retention periods in treated wastewater decreased bacterial deposition rates for the strains evaluated and elevated the transport potential in sand columns. We suggest that the wastewater quality should be taken into account in estimating the fate of pathogenic bacteria discharged from wastewater treatment facilities and the risks they pose in the aquatic environment.
Collapse
|
3
|
Chen J, Jin Y. Motility of Pseudomonas aeruginosa in saturated granular media as affected by chemoattractant. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 126:113-120. [PMID: 21958516 DOI: 10.1016/j.jconhyd.2011.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 07/28/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
To examine and quantify the effects of glass beads and chemoattractant on bacterial motility in granular media, we examined the motile behavior of P. aeruginosa in a saturated granular medium and quantified the effects of glass beads and the presence of a chemoattractant. By recording individual cell trajectories in microfluidic channels under a high-speed confocal microscope, we directly measured the cell's run direction and corresponding run-length, speed and turn angle. Bacterial run speed increased in the presence of chemoattractant in both aqueous and granular media. But it decreased in glass-beads compared to in aqueous media due to the restricted pore geometry and interactions between bacteria and grain surfaces. Notably, the relatively higher frequency distribution at turn angles of 170° decreased dramatically, while the smaller peak at 70° increased and became dominant on a bimodal distribution, showing more bacteria changed directions at smaller turn angles rather than reverse their swimming directions. Additionally, the presence of glass beads also decreased the chemotactic velocity and random motility by similar proportions due to the restrictive geometry and the interactions between bacteria and glass beads surface. Our study indicates that the swimming parameters measured from aqueous media cannot be directly adopted in models for predicting bacteria travel in granular media.
Collapse
Affiliation(s)
- Jiazhou Chen
- Key Laboratory of Subtropical Agriculture and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
4
|
|
5
|
Involvement of epidermal growth factor receptor-linked signaling responses in Pseudomonas fluorescens-infected alveolar epithelial cells. Infect Immun 2011; 79:1998-2005. [PMID: 21343351 DOI: 10.1128/iai.01232-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas fluorescens is an opportunistic indoor pathogen that can cause severe airway proinflammatory responses. Pulmonary epithelium, like other mucosal epithelial linings of the body, constitutes the first line of defense against airway microbial pathogens. Mucosal epithelial cells can be a sentinel of pathogenic bacteria via stimulation of specific cell surface receptors, including the epidermal growth factor receptor (EGFR) and Toll-like receptor (TLR). This study addressed the involvement of EGFR in airway epithelial pathogenesis by P. fluorescens. Human A549 pneumocytes showed prolonged production of proinflammatory interleukin-8 (IL-8) in response to infection with P. fluorescens, which was via the nuclear factor-kappa B (NF-κB) signaling pathway. Production of proinflammatory cytokine IL-8 was not mediated by P. fluorescens lipopolysaccharide, a representative TLR4 agonist, but was mediated through EGFR-linked signals activated by the opportunistic bacteria. Moreover, EGFR signals were involved in NF-κB signal-mediated production of proinflammatory cytokines. Along with persistent NF-κB activation, P. fluorescens enhanced the EGFR phosphorylation and subsequent activation of downstream mediators, including protein kinase B or extracellular-signal-regulated kinases 1/2. Blocking of EGFR-linked signals increased epithelial susceptibility to pathogen-induced epithelial cell death, suggesting protective roles of EGFR signals. Thus, airway epithelial exposure to P. fluorescens can trigger antiapoptotic responses via EGFR and proinflammatory responses via TLR4-independent NF-κB signaling pathway in human pneumocytes.
Collapse
|