1
|
Hyllestad S, Amato E, Nygård K, Vold L, Aavitsland P. The effectiveness of syndromic surveillance for the early detection of waterborne outbreaks: a systematic review. BMC Infect Dis 2021; 21:696. [PMID: 34284731 PMCID: PMC8290622 DOI: 10.1186/s12879-021-06387-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Waterborne outbreaks are still a risk in high-income countries, and their early detection is crucial to limit their societal consequences. Although syndromic surveillance is widely used for the purpose of detecting outbreaks days earlier than traditional surveillance systems, evidence of the effectiveness of such systems is lacking. Thus, our objective was to conduct a systematic review of the effectiveness of syndromic surveillance to detect waterborne outbreaks. METHOD We searched the Cochrane Library, Medline/PubMed, EMBASE, Scopus, and Web of Science for relevant published articles using a combination of the keywords 'drinking water', 'surveillance', and 'waterborne disease' for the period of 1990 to 2018. The references lists of the identified articles for full-text record assessment were screened, and searches in Google Scholar using the same key words were conducted. We assessed the risk of bias in the included articles using the ROBINS-I tool and PRECEPT for the cumulative body of evidence. RESULTS From the 1959 articles identified, we reviewed 52 articles, of which 18 met the eligibility criteria. Twelve were descriptive/analytical studies, whereas six were simulation studies. There is no clear evidence for syndromic surveillance in terms of the ability to detect waterborne outbreaks (low sensitivity and high specificity). However, one simulation study implied that multiple sources of signals combined with spatial information may increase the timeliness in detecting a waterborne outbreak and reduce false alarms. CONCLUSION This review demonstrates that there is no conclusive evidence on the effectiveness of syndromic surveillance for the detection of waterborne outbreaks, thus suggesting the need to focus on primary prevention measures to reduce the risk of waterborne outbreaks. Future studies should investigate methods for combining health and environmental data with an assessment of needed financial and human resources for implementing such surveillance systems. In addition, a more critical thematic narrative synthesis on the most promising sources of data, and an assessment of the basis for arguments that joint analysis of different data or dimensions of data (e.g. spatial and temporal) might perform better, should be carried out. TRIAL REGISTRATION PROSPERO: International prospective register of systematic reviews. 2019. CRD42019122332 .
Collapse
Affiliation(s)
- Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Institute of Health and Society, Oslo, Norway.
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Karin Nygård
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Vold
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Preben Aavitsland
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
2
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32126404 DOI: 10.5066/p9voobwt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
3
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137236. [PMID: 32126404 PMCID: PMC9140060 DOI: 10.1016/j.scitotenv.2020.137236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
4
|
Bylund J, Toljander J, Lysén M, Rasti N, Engqvist J, Simonsson M. Measuring sporadic gastrointestinal illness associated with drinking water - an overview of methodologies. JOURNAL OF WATER AND HEALTH 2017; 15:321-340. [PMID: 28598337 DOI: 10.2166/wh.2017.261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is an increasing awareness that drinking water contributes to sporadic gastrointestinal illness (GI) in high income countries of the northern hemisphere. A literature search was conducted in order to review: (1) methods used for investigating the effects of public drinking water on GI; (2) evidence of possible dose-response relationship between sporadic GI and drinking water consumption; and (3) association between sporadic GI and factors affecting drinking water quality. Seventy-four articles were selected, key findings and information gaps were identified. In-home intervention studies have only been conducted in areas using surface water sources and intervention studies in communities supplied by ground water are therefore needed. Community-wide intervention studies may constitute a cost-effective alternative to in-home intervention studies. Proxy data that correlate with GI in the community can be used for detecting changes in the incidence of GI. Proxy data can, however, not be used for measuring the prevalence of illness. Local conditions affecting water safety may vary greatly, making direct comparisons between studies difficult unless sufficient knowledge about these conditions is acquired. Drinking water in high-income countries contributes to endemic levels of GI and there are public health benefits for further improvements of drinking water safety.
Collapse
Affiliation(s)
- John Bylund
- National Food Agency, Box 622, Uppsala SE-751 26, Sweden E-mail:
| | - Jonas Toljander
- National Food Agency, Box 622, Uppsala SE-751 26, Sweden E-mail:
| | - Maria Lysén
- National Food Agency, Box 622, Uppsala SE-751 26, Sweden E-mail:
| | - Niloofar Rasti
- National Food Agency, Box 622, Uppsala SE-751 26, Sweden E-mail:
| | - Jannes Engqvist
- National Food Agency, Box 622, Uppsala SE-751 26, Sweden E-mail:
| | - Magnus Simonsson
- National Food Agency, Box 622, Uppsala SE-751 26, Sweden E-mail:
| |
Collapse
|
5
|
Levy K, Klein M, Sarnat SE, Panwhar S, Huttinger A, Tolbert P, Moe C. Refined assessment of associations between drinking water residence time and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia. JOURNAL OF WATER AND HEALTH 2016; 14:672-681. [PMID: 27441862 PMCID: PMC5468164 DOI: 10.2166/wh.2016.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent outbreak investigations suggest that a substantial proportion of waterborne disease outbreaks are attributable to water distribution system issues. In this analysis, we examine the relationship between modeled water residence time (WRT), a proxy for probability of microorganism intrusion into the distribution system, and emergency department visits for gastrointestinal (GI) illness for two water utilities in Metro Atlanta, USA during 1993-2004. We also examine the association between proximity to the nearest distribution system node, based on patients' residential address, and GI illness using logistic regression models. Comparing long (≥90th percentile) with intermediate WRTs (11th to 89th percentile), we observed a modestly increased risk for GI illness for Utility 1 (OR = 1.07, 95% CI: 1.02-1.13), which had substantially higher average WRT than Utility 2, for which we found no increased risk (OR = 0.98, 95% CI: 0.94-1.02). Examining finer, 12-hour increments of WRT, we found that exposures >48 h were associated with increased risk of GI illness, and exposures of >96 h had the strongest associations, although none of these associations was statistically significant. Our results suggest that utilities might consider reducing WRTs to <2-3 days or adding booster disinfection in areas with longer WRT, to minimize risk of GI illness from water consumption.
Collapse
Affiliation(s)
- Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail: ; Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Mitchel Klein
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail:
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail:
| | - Samina Panwhar
- Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Present address: Oregon Health Authority, 500 Summer St. NE, E52, Salem, OR 97301, USA
| | - Alexandra Huttinger
- Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paige Tolbert
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail:
| | - Christine Moe
- Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Shortridge JE, Guikema SD. Public health and pipe breaks in water distribution systems: analysis with internet search volume as a proxy. WATER RESEARCH 2014; 53:26-34. [PMID: 24495984 DOI: 10.1016/j.watres.2014.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/01/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Drinking water distribution infrastructure has been identified as a factor in waterborne disease outbreaks and improved understanding of the public health risks associated with distribution system failures has been identified as a priority area for research. Pipe breaks may pose a risk, as their occurrence and repair can result in low or negative pressure, potentially allowing contamination of drinking water from adjacent soils. However, measuring this phenomenon is challenging because the most likely health impact is mild gastrointestinal (GI) illness, which is unlikely to result in a doctor or hospital visit. Here we present a novel method that uses data mining techniques and internet search volume to assess the relationship between pipe breaks and symptoms of GI illness in two U.S. cities. Weekly search volume for the terms diarrhea and vomiting was used as the response variable with the number of pipe breaks in each city as a covariate as well as additional covariates to control for seasonal patterns, search volume persistence, and other sources of GI illness. The fit and predictive accuracy of multiple regression and data mining techniques were compared, with the best performance obtained using random forest and bagged regression tree models. Pipe breaks were found to be an important and positively correlated predictor of internet search volume in multiple models in both cities, supporting previous investigations that indicated an increased risk of GI illness from distribution system disturbances.
Collapse
Affiliation(s)
- Julie E Shortridge
- Department of Geography & Environmental Engineering, Johns Hopkins University, USA.
| | - Seth D Guikema
- Department of Geography & Environmental Engineering, Johns Hopkins University, USA
| |
Collapse
|