1
|
Song T, Xie W, Li Y, Li J, Zhang X, Dong W, Wang H. Rapid static feeding combined with Fe 2+ addition for improving the formation and stability of aerobic granular sludge in low-strength wastewater. ENVIRONMENTAL RESEARCH 2024; 242:117770. [PMID: 38029821 DOI: 10.1016/j.envres.2023.117770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Aerobic granular sludge (AGS) needs a long start-up time and always shows unstable performance when it is used to treat low-strength wastewater. In this study, a rapid static feeding combined with Fe2+ addition as a novel strategy was employed to improve the formation and stability of AGS in treating low-strength wastewater. Fe-AGS was formed within only 7 days and showed favorable pollutant removal capability and settling performance. The ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentration in the effluent were lower than 5 mg/L and 50 mg/L after day 23, respectively. The sludge volume index (SVI) and mixed liquid suspended solids (MLSS) was 37 mL/g and 2.15 g/L on day 50, respectively. Rapid static feeding can accelerate granules formation by promoting the growth of heterotrophic bacteria, but the granules are unstable due to filamentous bacteria overgrowth. Fe2+ addition can inhibit the growth of filamentous bacteria and promote the aggregation of functional bacteria (eg. Nitrosomonas, Nitrolancea, Paracoccus, Diaphorobacter) by enhancing the secretion of extracellular polymeric substances (EPS). This study provides a new way for AGS application in low-strength wastewater treatment.
Collapse
Affiliation(s)
- Tao Song
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, PR China; School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Wanying Xie
- College of Civil Engineering and Architecture, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Yong Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, PR China.
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
2
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
3
|
Li ZH, Guo Y, Hang ZY, Zhang TY, Yu HQ. Simultaneous evaluation of bioactivity and settleability of activated sludge using fractal dimension as an intermediate variable. WATER RESEARCH 2020; 178:115834. [PMID: 32339865 DOI: 10.1016/j.watres.2020.115834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Bioactivity and settleability of activated sludge are essential for the operation of activated sludge systems in wastewater treatment. In this work, the fractal dimension of sludge image is proposed as a tool to evaluate these two factors. The specific endogenous respiration rate (SOURe) and the specific quasi-endogenous respiration rate (SOURq) are found to be more dependent on the 3D structure of sludge than the specific total respiration rate (SOURt). The relationship between the fractal structure and bioactivity suggests that the bioactivity governs the acceptable upper bound of the fractal dimension (Df), as at its theoretical maximum of 2.0, the non-porous compact flocs are predominant. The settleability or the biomass concentration determines the acceptable lower bound of Df, as at its theoretical minimum of 1.0, the free-swimming microbes are predominant. Our data reveal that the activated sludge has an acceptable fractal dimension Df in a range of 1.07-1.68. In practice, the fractal dimension should be controlled at a reasonable value as there is a trade-off between the bioactivity and physical structure to achieve better performance. A decrease or increase in the fractal dimension can serve as a signal for the change of the operational status, and this is further elucidated from the perspective of settling tanks using state point analysis. Compared with respirogram measurement, measuring fractal dimension is a complex process and its online implementation is challenging. Also, the measured value varies with the methods used. In addition, the difference in their theoretical values depends on the homogeneity of the sludge structure. Since the fractal dimension Df reflects both bioactivity and settleability of the sludge but is difficult to measure, in this work a relationship between Df and the easily measurable respirogram is established, and a method using the respirogram as a proxy of Df is proposed to control the bioactivity and settleability simultaneously. This respiration-based method is able to simultaneously control aeration and settling tanks, and could serve as an efficient tool for the management of wastewater treatment plants.
Collapse
Affiliation(s)
- Zhi-Hua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yao Guo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhen-Yu Hang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tian-Yu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717-2400, USA
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Maqbool T, Ly QV, Asif MB, Ng HY, Zhang Z. Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137291. [PMID: 32087584 DOI: 10.1016/j.scitotenv.2020.137291] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In biological wastewater treatment systems, extracellular polymeric substances (EPS) are continuously excreted as a response to environmental changes and substrate conditions. It could severely affect the treatment efficacy such as membrane fouling, dewaterability and the formation of carcinogenic disinfection by-products (DBPs). The heterogeneous dissolved organic matter (DOM) with varying size and chemical nature constitute a primary proportion of EPS. In the last few decades, fluorescence spectroscopy has received increasing attention for characterizing these organic substances due to the attractive features of this low-cost spectroscopic approach, including easy sample handling, rapid, non-destructive and highly sensitive nature. In this review, we summarize the application of fluorescence spectroscopy for characterizing EPS and provide the potential implications for online monitoring of water quality along with its limitations. We also link the dynamics of fluorescent dissolved organic matter (FDOM) in EPS with operational and environmental changes in wastewater treatment systems as well as their associations with metal binding, membrane fouling, adsorption, toxicity, and dewaterability. The multiple modes of exploration of fluorescence spectra, such as synchronous spectra with or without coupling with two-dimensional correlation spectroscopy (2D-COS), excitation-emission matrix (EEM) deconvoluted fluorescence regional integration (FRI), and parallel factor analysis (PARAFAC) are also discussed. The potential fluorescence indicators to depict the composition and bulk characteristics of EPS are also of interest. Further studies are highly recommended to expand the application of fluorescence spectroscopy paired with appropriate supplementary techniques to fully unravel the underlying mechanisms associated with EPS.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - How Yong Ng
- National University of Singapore Research Institute, National University of Singapore, Singapore
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
5
|
Density-Based Separation of Microbial Functional Groups in Activated Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010376. [PMID: 31935958 PMCID: PMC6981482 DOI: 10.3390/ijerph17010376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022]
Abstract
Mechanistic understanding of how activated sludge (AS) solids density influences wastewater treatment processing is limited. Because microbial groups often generate and store intracellular inclusions during certain metabolic processes, it is hypothesized that some microorganisms, like polyphosphate-accumulating organisms (PAOs), would have higher biomass densities. The present study developed a density-based separation approach and applied it to suspended growth AS in two full-scale domestic water resource recovery facilities (WRRFs). Incorporating quantitative real-time PCR (qPCR) and fluorescence in situ hybridization (FISH) analyses, the research demonstrated the effectiveness of density-based separation in enriching key microbial functional groups, including ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and PAOs, by up to 90-fold in target biomass fractions. It was observed that WRRF process functionalities have significant influence on density-based enrichment, such that maximum enrichments were achieved in the sludge fraction denser than 1.036 g/cm3 for the enhanced biological phosphorus removal (EBPR) facility and in the sludge fraction lighter than 1.030 g/cm3 for the non-EBPR facility. Our results provide important information on the relationship between biomass density and enrichment of microbial functional groups in AS, contributing to future designs of enhanced biological treatment processes for improved AS settleability and performance.
Collapse
|
6
|
Mohammadi P, Karami N, Zinatizadeh AA, Falahi F, Aghamohammadi N, Almasi A. Using high frequency and low-intensity ultrasound to enhance activated sludge characteristics. ULTRASONICS SONOCHEMISTRY 2019; 54:274-280. [PMID: 30712854 DOI: 10.1016/j.ultsonch.2019.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, high-frequency ultrasound wave (1.8 MHz) at low intensity was applied to improve activated sludge settleability at high MLSS concentration. The effect of irradiation intensity, sonication mode, MLSS concentration and sample volume on the physical characteristics of sludge in a pilot scale settling column were investigated for optimizing the conditions. The obtained results showed that high-frequency ultrasound decreased the height of sludge (44%) and effluent turbidity (82.2%) and increased sludge settling velocity about 3 times at high biomass concentration. Irradiation intensity of 0.4 w/cm2 and sonication mode with interval times of 10 s showed the best results on the performance of the system at MLSS concentration of 8000 mg/L with a sample volume of 3 L.
Collapse
Affiliation(s)
- Parviz Mohammadi
- Research Center for Environmental Determinants of Health, Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Karami
- Research Center for Environmental Determinants of Health, Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Zinatizadeh
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Farzaneh Falahi
- Research Center for Environmental Determinants of Health, Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ali Almasi
- Research Center for Environmental Determinants of Health, Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Sima XF, Li BB, Jiang H. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1612230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Li L, Pagilla KR. Biomass density-function relationships in suspended growth biological processes - A critical review. WATER RESEARCH 2017; 111:274-287. [PMID: 28104515 DOI: 10.1016/j.watres.2017.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Good settling performance in suspended growth biomass systems, for example in activated sludge (AS) process, leads to efficient wastewater and sludge treatment. Factors that cause the differences in settleablility of AS include the morphology of bacteria, microbial community structure, and the density of bacteria and flocs. Density of AS at three levels, namely, cell, floc, and process, have been discussed here to explain the variations in AS settleability. Dense materials, inside or outside the cell, significantly increase density of AS bacteria or flocs. Functional bacteria, defined as those performing N and P removal and recovery such as phosphate accumulating organisms, nitrifiers, and anammox contain cellular inclusions that increase their density, and consequently a dense and well-settling biomass results at the process level in those systems. A density based selector of AS can be used to enrich functional bacteria in the process through the wasting and sludge age control operations in AS process. This paper critically reviews the latest literature to elucidate mechanisms of density enhancement from cell to process level, and identifies needs/strategies to improve the AS process through a biomass density selector.
Collapse
Affiliation(s)
- Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Wágner DS, Ramin E, Szabo P, Dechesne A, Plósz BG. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking. WATER RESEARCH 2015; 78:121-132. [PMID: 25935367 DOI: 10.1016/j.watres.2015.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used.
Collapse
Affiliation(s)
- Dorottya S Wágner
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
| | - Elham Ramin
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
| | - Peter Szabo
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Seder-Colomina M, Goubet A, Lacroix S, Morin G, Ona-Nguema G, Esposito G, Van Hullebusch ED, Pernelle JJ. Moderate oxygen depletion as a factor favouring the filamentous growth of Sphaerotilus natans. Antonie van Leeuwenhoek 2015; 107:1135-44. [DOI: 10.1007/s10482-015-0405-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
|
12
|
Wells M, Wareham DG, Broady P. The effect of loess addition on the settling ability of activated sludge. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:728-734. [PMID: 25901850 DOI: 10.1080/10934529.2015.1011972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this research, loess addition was investigated as a possible means of controlling the bulking sludge generated from a sequencing batch reactor (SBR) system treating a synthetic wastewater. The specific objective was to investigate whether loess changed the morphology of the sludge (i.e., influenced the relative abundance of filamentous species), as opposed to improving settling simply because the clay portion of the loess acted as a flocculating agent. To this end, two sets of batch tests were performed using 1 L reactors filled with bulking sludge from the SBR. The first set of batch tests investigated the effect of different loess concentration on the settling properties of the sludge; thus loess was added in concentrations of 0.0, 0.4, 2.0 and 5.0 g L(-1). The 5.0 g L(-1) loess concentration exhibited the most positive results on settling, bringing the modified sludge volume index (SVI) down into the target range of 150 mL g(-1). The second set of batch tests investigated filament length along with the modified SVI. It appeared that at the microbial level, 5.0 g L(-1)of loess caused no reduction in filament length, suggesting no reduction in the amount of filamentous microorganisms. This means that adding loess to a system after it has bulked has the potential to mask the bulking problem by improving settling, while not fixing the problem microbiologically.
Collapse
Affiliation(s)
- Miriam Wells
- a Department of Civil and Natural Resources Engineering , University of Canterbury , Christchurch , New Zealand
| | | | | |
Collapse
|
13
|
Chen X, Kong L, Wang X, Tian S, Xiong Y. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface. Bioprocess Biosyst Eng 2014; 38:273-85. [PMID: 25106470 DOI: 10.1007/s00449-014-1266-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
A novel suspended carrier with porous surface was firstly prepared by coating a sponge on the inside and outside of a hard polyethylene ring. Herein the effects of the sponge thickness (0, 2, 4, 6 mm) and pore size (17, 45, 85 pores per inch, ppi) on the performance of the start-up stage in moving bed biofilm reactor (MBBR) were investigated. The results indicated that the home-made carrier with the sponge thickness of 4 mm and the pore size of 45 ppi, defined as SC4-45, showed the best performance, which obtained high biomass concentration of 2,136.6 mg/L, oxygen uptake rate for COD of 150.1 mg O2/h and oxygen uptake rate for NH4(+)-N of 17.4 mg O2/h. The DGGE profiles of the biofilms obtained in SC4-45 and a commercial carrier showed a similar community as the Dice similarity coefficients between two samples was 0.72. Furthermore, 16S rRNA gene sequence analysis reveals dominance of Sphaerotilus sp. and Aeromonas sp. in the community of both samples. Moreover, for the MBBR based on SC4-45, COD and NH4(+)-N removal rates reached 99.5 ± 1.1 and 93.6 ± 2.3 % at the end of the start-up stage, much higher than those of the commercial carrier, 74.9 ± 2.7 and 40.0 ± 1.8 %, respectively. These indicated the novel carrier obtained a quick start-up.
Collapse
Affiliation(s)
- Xin Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China,
| | | | | | | | | |
Collapse
|