1
|
Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace. SUSTAINABILITY 2022. [DOI: 10.3390/su14148288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water management is a crucial resource conservation challenge that mankind faces, and encouraging the creation of manmade wetlands with the goal of achieving long-term water management is the key to long-term urban development. To summarise and analyse the status of the research on the relationship between water management and constructed wetlands, this paper makes use of the advantages of the bibliometric visualization of CiteSpace to generate country/region maps and author-collaboration maps, and to analyse research hotspots and research dynamics by using keywords and literature co-citations based on 1248 pieces of related literature in the core collection in the Web of Science (WoS) database. The existing research shows that the research content and methods in the field of constructed-wetland and water-management research are constantly being enriched and deepened, including the research methods frequently used in constructed wetlands in water management and in the research content under concern, the functions and roles of constructed wetlands, the relevant measurement indicators of the purification impact of constructed wetlands on water bodies, and the types of water bodies treated by constructed wetlands in water management. We summarise the impact pathways of constructed wetlands on water management, as well as the impact factors of constructed wetlands under water-management objectives, by analysing the future concerns in the research field to provide references for research.
Collapse
|
2
|
Ntakiyiruta P, Briton BGH, Nsavyimana G, Adouby K, Nahimana D, Ntakimazi G, Reinert L. Optimization of the phytoremediation conditions of wastewater in post-treatment by Eichhornia crassipes and Pistia stratiotes: kinetic model for pollutants removal. ENVIRONMENTAL TECHNOLOGY 2022; 43:1805-1818. [PMID: 33198589 DOI: 10.1080/09593330.2020.1852445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
This study aims at determining the optimal conditions for pollutants removal in wastewater using Eichhornia crassipes (E. crassipes) and Pistia stratiotes (P. stratiotes) as appropriate aquatic plants for a post-treatment by phytoremediation. From factors such as residence time, plant density and initial PO43- concentration, four responses, i.e. the removal efficiency of PO43-, NO3-, NH4+ and the chemical oxygen demand (COD) were followed, using complete factorial design. After validation of the regression models by the statistical analyses, optimal conditions were obtained by using the global desirability function. Global desirabilities of 0.96 and 0.97 were respectively obtained for E. crassipes and P. stratiotes, for a residence time of 30 days, a plant density of 60 feet/m2 and an initial PO43- concentration of 10 mg/L. Using E. crassipes, this corresponds to the elimination of 94.2% of PO43-; 93.3% of NO3-; 95.0% of NH4+ and 63.6% of COD. In the case of P. stratiotes, 93.9% of PO43-; 83.4% of NO3-, 99.5% of NH4+ and 84.4% of COD were removed. Finally, under the used conditions, E. crassipes are able to better eliminate phosphorus and nitrates, while P. stratiotes are very effective in removing NH4+ and COD.
Collapse
Affiliation(s)
- Pierre Ntakiyiruta
- Laboratoire des Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université de Burundi, Bujumbura, Burundi
| | - Bi Gouessé Henri Briton
- Laboratoire des Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Gaston Nsavyimana
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université de Burundi, Bujumbura, Burundi
| | - Kopoin Adouby
- Laboratoire des Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - David Nahimana
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université de Burundi, Bujumbura, Burundi
| | - Gaspard Ntakimazi
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université de Burundi, Bujumbura, Burundi
| | - Laurence Reinert
- Laboratoire de Chimie Moléculaire et de l'Environnement (LCME), Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
3
|
Wojtuń B, Samecka-Cymerman A, Żołnierz L, Rajsz A, Kempers AJ. Vascular plants as ecological indicators of metals in alpine vegetation (Karkonosze, SW Poland). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20093-20103. [PMID: 28702907 DOI: 10.1007/s11356-017-9608-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Calluna vulgaris, Carex rigida, Deschampsia flexuosa, Nardus stricta and Vaccinium myrtillus are abundant in the vegetation of mountainous areas in Northern and Central Europe. Knowledge of their ability to accumulate increased amounts of metals could be useful in the evaluation of environmental pollution in the alpine tundra of high mountains. Additionally, this investigation may contribute to understanding the rate and direction of recent vegetation change in Karkonosze and similar types of environments. Our investigation revealed that Carex rigida, C. vulgaris and V. myrtillus contain excessive Mn concentrations in shoots with the highest BF for this element compared to the BFs of other elements. C. rigida, with Cu, Mn and Zn concentrations exceeding the toxicity thresholds for plants, seems to be the best metal phytoaccumulator for Nardus stricta grasslands Carici (rigidae)-Nardetum (CrN) and alpine heathlands Carici (rigidae)-Festucetum airoidis (CrFa) associations in the Karkonosze. Based on relevant BFs >1, it can be stated that the following plant available metals were transferred to shoots: Cu, Mn and Ni by C. vulgaris; Cd, Cu, Mn, Ni and Zn by C. rigida; Cd, Cu, Mn, Ni and Zn by D. flexuosa; Cu, Mn, Ni and Zn by N. stricta and Cu, Mn and Zn by V. myrtillus.
Collapse
Affiliation(s)
- Bronisław Wojtuń
- Department of Ecology, Biogeochemistry and Environmental Protection, Institute of Botany, Wrocław University, ul. Kanonia 6/8, 50-328, Wrocław, Poland
| | - Aleksandra Samecka-Cymerman
- Department of Ecology, Biogeochemistry and Environmental Protection, Institute of Botany, Wrocław University, ul. Kanonia 6/8, 50-328, Wrocław, Poland.
| | - Ludwik Żołnierz
- Department of Botany and Plant Ecology, University of Environmental and Life Studies, Pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Adam Rajsz
- Department of Ecology, Biogeochemistry and Environmental Protection, Institute of Botany, Wrocław University, ul. Kanonia 6/8, 50-328, Wrocław, Poland
| | - Alexander J Kempers
- Department of Environmental Science, Radboud University Nijmegen, Institute for Water and Wetland Research, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Syranidou E, Christofilopoulos S, Kalogerakis N. Juncus spp.-The helophyte for all (phyto)remediation purposes? N Biotechnol 2016; 38:43-55. [PMID: 28040555 DOI: 10.1016/j.nbt.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 11/20/2016] [Accepted: 12/24/2016] [Indexed: 11/19/2022]
Abstract
Helophytic plants contribute significantly to the remediation of ecosystems through a wide range of physiological or biochemical mechanisms including the role of endophytic bacteria. This review highlights the services provided by Juncus spp. wetland plants, from phytoremediation of soils and groundwater with heavy metals and/or organics to municipal or industrial wastewater treatment in constructed wetlands. The data presented also provide information on the efficiency of specific Juncus spp. in response to various metals and organic compounds, in an effort to exploit the natural capabilities of autochthonous over exotic species in phytoremediation strategies. An overall successful direct (the plant itself) or indirect (through stimulation of elimination mechanisms) contribution of Juncus to remediation of the above contaminants is revealed. However, the specific characteristics of the species used, the type of the pollutant and the region, are issues that should be addressed for a successful outcome.
Collapse
Affiliation(s)
- Evdokia Syranidou
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece
| | - Stavros Christofilopoulos
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece
| | - Nicolas Kalogerakis
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece.
| |
Collapse
|
5
|
Montenegro IPFM, Mucha AP, Reis I, Rodrigues P, Almeida CMR. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19471-19480. [PMID: 27381357 DOI: 10.1007/s11356-016-7154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- I P F M Montenegro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - A P Mucha
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | - I Reis
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - P Rodrigues
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - C M R Almeida
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|