1
|
Jiang M, Huang J, Li P, Ataa B, Gu J, Wu Z, Qiao W. Optimization of membrane filtration and cleaning strategy in a high solid thermophilic AnMBR treating food waste. CHEMOSPHERE 2023; 342:140151. [PMID: 37714478 DOI: 10.1016/j.chemosphere.2023.140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Anaerobic membrane bioreactor is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m3·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m2·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.
Collapse
Affiliation(s)
- Mengmeng Jiang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jiu Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Peng Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Bridget Ataa
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Jinheng Gu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhiyue Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
2
|
Zhang J, Wu B, Zhang J, Zhai X, Liu Z, Yang Q, Liu H, Hou Z, Sano D, Chen R. Virus removal during sewage treatment by anaerobic membrane bioreactor (AnMBR): The role of membrane fouling. WATER RESEARCH 2022; 211:118055. [PMID: 35042072 DOI: 10.1016/j.watres.2022.118055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a low-energy and promising solution for sewage treatment. During the treatment, the fouled membrane of AnMBR is recognized as an important barrier against pathogenic viruses. Here, the role of membrane fouling of an AnMBR at room temperature in the virus removal was investigated using MS2 bacteriophage as a virus surrogate. Results revealed that the virus removal efficiency of AnMBR was in the range of 0.2 to 3.6 logs, gradually increasing with the course of AnMBR operation. Virus removal efficiency was found to be significantly correlated with transmembrane pressure (R2=0.92, p<0.01), especially in the rapid fouling stage, indicating that membrane fouling was the key factor in the virus removal. The proportion of virus decreased from 52.03% to 15.04% in the membrane foulants when membrane fouling was aggravating rapidly, yet increased from 0.74% to 21.52% in the mixed liquor. Meanwhile, the permeate flux dramatically dropped. These imply that the primary rejection mechanism of virus by membrane in the slow fouling stage is the virus adsorption onto membrane, while the sieving effect is the main reason in the rapid fouling stage. Ex-situ virus rejection test unveiled that the cake layer was the main contributor to the overall virus rejection, while the greatest resistance-specific virus rejection was provided by the organic pore blocking. This paper provides operation strategies to balance enhanced virus removal and high permeate flux by regulating the membrane fouling process.
Collapse
Affiliation(s)
- Jinfan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Baolei Wu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Jie Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Xuanyu Zhai
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Zhendong Liu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Qiqi Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Zhaoyang Hou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Abstract
Catalytic membrane reactors have been widely used in different production industries around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a cleaner process perspective and reduces energy consumption in line with the process intensification strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in a single unit by improving the performance of the process in terms of conversion and selectivity. The core of the CMR is the membrane which can be polymeric or inorganic depending on the operating conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The number of studies devoted to applying CMR with higher membrane area per unit volume in multi-phase reactions remains very limited for both catalytic polymeric and inorganic membranes. The various bio-based catalytic membrane system is also used in a different commercial application. The opportunities and advantages offered by applying catalytic membrane reactors to multi-phase systems need to be further explored. In this review, the preparation and the application of inorganic membrane reactors in the different catalytic processes as water gas shift (WGS), Fisher Tropsch synthesis (FTS), selective CO oxidation (CO SeLox), and so on, have been discussed.
Collapse
|
4
|
Zhu Y, Chen R, Li YY, Sano D. Virus removal by membrane bioreactors: A review of mechanism investigation and modeling efforts. WATER RESEARCH 2021; 188:116522. [PMID: 33091802 DOI: 10.1016/j.watres.2020.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 10/13/2020] [Indexed: 05/09/2023]
Abstract
The increasing pressure on the global water supply calls for more advanced solutions with higher efficiency and better sustainability, leading to the promptly developing water reclamation and reuse schemes including treatment technologies and risk management strategies where microbial safety is becoming a crucial aspect in the interest of public health. Backed up by the development of membrane technology, membrane bioreactors (MBR) have received substantial attention for their superiority over conventional treatment methods in many ways and are considered promising in the water reclamation realm. This review paper provides an overview of the efforts made to manage and control the potential waterborne viral disease risks raised by the use of effluent from MBR treatment processes, including the mechanisms involved in the virus removal process and the attempts to model the dynamics of the removal process. In principle, generalized and integrated virus removal models that provide insight into real-time monitoring are urgently needed for advanced real-time control purpose. Future studies of approaches that can well handle the inherent uncertainty and nonlinearity of the complex removal process are crucial to the development and promotion of related technologies.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Siddiqui MA, Dai J, Luo Y, Chen G. Investigation of the short-term effects of extracellular polymeric substance accumulation with different backwashing strategies in an anaerobic self-forming dynamic membrane bioreactor. WATER RESEARCH 2020; 185:116283. [PMID: 32795719 DOI: 10.1016/j.watres.2020.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The optimum operation strategy for a side-stream external anaerobic self-forming dynamic membrane bioreactor (AnSFDMBR) was investigated by coupling such a system with an up-flow anaerobic sludge blanket reactor. Time-based backwashing with different intervals and transmembrane pressure (TMP)-based backwashing were compared as the operation strategies of the AnSFDMBR. The system performance, extracellular polymeric substance (EPS) accumulation in the dynamic layer and on the membrane mesh of the AnSFDMBR, and the physical properties of the dynamic layer were closely monitored. Both operation strategies achieved stable operation with effluent turbidity less than 5 nephelometric turbidity units with a slowly increasing TMP. However, with the time-based backwashing strategy, the EPS accumulation rate in the dynamic layer was more than 20 times higher than that on the mesh, indicating that frequent backwashing might have a negative impact on the AnSFDMBR. The impacts of EPS accumulation on the membrane mesh were negligible considering the small amount of EPS residual and the large pore size of the mesh. On the contrary, the EPS accumulation in the dynamic layer changed the layer's physical properties and further impacted on the performance of the AnSFDMBR. The accumulation of polysaccharides in the dynamic layer was the main reason for the layer's compactness, which was negatively correlated with the specific surface area and further led to the TMP increase. The polysaccharides in the dynamic layer-to-sludge ratio increased to around 1.6 with only 5 days of time-base operation. With TMP-based operation, it took more than 10 days for polysaccharides in the dynamic layer-to-sludge ratio reaching 1.6. The low TMP increase rate, high effluent quality, and slow EPS accumulation with TMP-based backwashing indicated TMP-based operation is applicable in the studied AnSFDMBR. Nevertheless, the correlation between TMP and the accumulation of polysaccharides should be further investigated to find the optimum TMP for backwashing.
Collapse
Affiliation(s)
- Muhammad Ahmar Siddiqui
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ji Dai
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yu Luo
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Mohammed K, Sahu O. Recovery of chromium from tannery industry waste water by membrane separation technology: Health and engineering aspects. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Ultrafiltration with intermittent relaxation using colloidal silica and humic acid as model foulants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Manukyan L, Li P, Gustafsson S, Mihranyan A. Growth media filtration using nanocellulose-based virus removal filter for upstream biopharmaceutical processing. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Julian H, Ye Y, Li H, Chen V. Scaling mitigation in submerged vacuum membrane distillation and crystallization (VMDC) with periodic air-backwash. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wu B, Wang R, Fane AG. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review. WATER RESEARCH 2017; 110:120-132. [PMID: 27998784 DOI: 10.1016/j.watres.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/20/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
Membrane filtration processes have been widely applied in water and wastewater treatment for many decades. Concerns related to membrane treatment effectiveness, membrane lifespan, and membrane fouling control have been paid great attention. To achieve sustainable membrane operation with regards to low energy and maintenance cost, monitoring membrane performance and applying suitable membrane control strategies are required. As the most abundant species in water and wastewater, bacteriophages have shown great potential to be employed in membrane processes as (1) indicators to assess membrane performance considering their similar properties to human pathogenic waterborne viruses; (2) surrogate particles to monitor membrane integrity due to their nano-sized nature; and (3) biological agents to alleviate membrane fouling because of their antimicrobial properties. This study aims to provide a comprehensive review on the roles of bacteriophages in membrane-based water and wastewater treatment processes, with focuses on their uses for membrane performance examination, membrane integrity monitoring, and membrane biofouling control. The advantages, limitations, and influencing factors for bacteriophage-based applications are reported. Finally, the challenges and prospects of bacteriophage-based applications in membrane processes for water treatment are highlighted.
Collapse
Affiliation(s)
- Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|