1
|
Liu H, Zeng W, Wu L, Meng Q, Zhang J, Peng Y. Integrated process of Tetrasphaera-dominated in-situ waste activated sludge fermentation, biological phosphorus removal and endogenous denitrification in single reactor for treatment of wastewater with limited carbon sources. BIORESOURCE TECHNOLOGY 2024; 412:131392. [PMID: 39216700 DOI: 10.1016/j.biortech.2024.131392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
An integrated process of sludge in-situ fermentation, biological phosphorus removal and endogenous denitrification (ISFPR-ED) was developed to treat low ratio of chemical oxygen demand to nitrogen (COD/N) wastewater and waste activated sludge (WAS) in a single reactor. Nutrient removal and WAS reduction were achieved due to Tetrasphaera-dominated sludge fermentation provided organic carbon in extending the anaerobic duration. The WAS reduction efficiency, effluent orthophosphate (PO43--P) and total inorganic nitrogen reached 28.1 %, less than 0.4 and 7.2 mg/L, respectively. While organic carbon was reduced by 67 %. Tetrasphaera, conventional polyphosphate accumulating organisms (PAOs) stored glycogen, amino acids, and PHA for nutrient removal. Excess energy from fermentation enhanced anaerobic PO43--P uptake by Tetrasphaera. Tetrasphaera was the dominant PO43--P removal and fermentation bacteria, working synergistically with conventional PAOs and fermenting microorganisms. This integrated process improves nutrient removal efficiency and reduces operating costs for carbon addition and WAS disposal in wastewater treatment.
Collapse
Affiliation(s)
- Hongjun Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiayu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
2
|
Sun Y, Zuo Y, Shao Y, Wang L, Jiang LM, Hu J, Zhou C, Lu X, Huang S, Zhou Z. Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction. WATER RESEARCH X 2024; 24:100243. [PMID: 39188329 PMCID: PMC11345402 DOI: 10.1016/j.wroa.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
The goal of this study was to assess the impacts or benefits of sludge in situ reduction (SIR) within wastewater treatment processes with relation to global warming potential in wastewater treatment plants, with a comprehensive consideration of wastewater and sludge treatment. The anaerobic side-stream reactor (ASSR) and the sludge process reduction activated sludge (SPRAS), two typical SIR technologies, were used to compare the carbon footprint analysis results with the conventional anaerobic - anoxic - oxic (AAO) process. Compared to the AAO, the ASSR with a typical sludge reduction efficiency (SRE) of 30 % increased greenhouse gas (GHG) emissions by 1.1 - 1.7 %, while the SPRAS with a SRE of 74 % reduced GHG emissions by 12.3 - 17.6 %. Electricity consumption (0.025 - 0.027 kg CO2-eq/m3), CO2 emissions (0.016 - 0.059 kg CO2-eq/m3), and N2O emissions (0.009 - 0.023 kg CO2-eq/m3) for the removal of secondary substrates released from sludge decay in the SIR processes were the major contributor to the increased GHG emissions from the wastewater treatment system. By lowering sludge production and the organic matter content in the sludge, the SIR processes significantly decreased the carbon footprints associated with sludge treatment and disposal. The threshold SREs of the ASSR for GHG reduction were 27.7 % and 34.6 % for the advanced dewatering - sanitary landfill and conventional dewatering - drying-incinerating routes, respectively. Overall, the SPRAS process could be considered as a cost-effective and sustainable low-carbon SIR technology for wastewater treatment.
Collapse
Affiliation(s)
- Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaming Hu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Xi Lu
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Song Huang
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
3
|
Wu H, Xing Z, Zhan G. Dissolved oxygen drives heterotrophic microorganism succession to regulate low carbon source wastewater treatment enhanced by slurry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121804. [PMID: 38996606 DOI: 10.1016/j.jenvman.2024.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The limited availability of carbon sources in low carbon source wastewater has always hindered nitrogen removal efficiency. The residual slurry liquid after anaerobic digestion has the potential to be used as a carbon source. This study investigated the optimal parameters of dissolved oxygen (DO) for enhancing the treatment of low carbon source wastewater using slurry, and revealed the characteristics of carbon metabolism gene enrichment and carbon fixation potential driven by DO. The results indicated that treating wastewater under high DO concentrations (3-4 mg/L) conditions could meet the emission standards set by wastewater treatment plants in China. However, the lower-cost DO concentration of 3 mg/L is considered a more cost-effective parameter, effectively removing 85.68% of chemical oxygen demand and 91.56% of total nitrogen. Mechanistic analysis suggested that reducing DO concentration increased the diversity of microbial communities. Regulating DO concentration reshaped the co-metabolic network of microorganisms with different DO sensitivities by influencing Hydrogenophaga and Chlorobium. This ultimately led to the reconstruction of heterotrophic microbial communities dominated by Sphaerotilus and Acidovorax under high DO conditions, and heterotrophic-autotrophic co-enriched microbial communities dominated by Chlorobium under low DO conditions (1-2 mg/L). Additionally, under high DO conditions, high microbial mass transfer efficiency and the enrichment of functional genes were crucial for achieving high nitrogen removal performance. Further, the microbial carbon fixation potential was relatively high under the DO 3 mg/L condition, helping to reduce the consumption of additional carbon sources. This study provided innovative ideas for the sustainable and low-carbon development of wastewater treatment technology.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Ning X, Hu J, Yue J, Tang T, Zhang B. Microbial community structure of an anaerobic side-stream coupled anoxic-aerobic membrane bioreactor (AOMBR-ASSR) for an in-situ sludge reduction process. Bioprocess Biosyst Eng 2024; 47:1027-1037. [PMID: 38777954 DOI: 10.1007/s00449-024-03019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
With the anoxic-aerobic membrane bioreactor (AO-MBR, CP) as a reference, high-throughput sequencing technology was used to reveal the characteristics of the microbial community structure in the anaerobic side-stream anoxic-aerobic membrane bioreactor sludge reduction process (AOMBR-ASSR, SRP). After the stable operation of two processes for 120 days, the average removal efficiencies of TN and TP in the effluent of SRP were increased by 5.6% and 29.8%, respectively. The observed sludge yields (Yobs) of the two processes were 0.14 and 0.17 gMLSS/(gCOD), respectively, and the sludge reduction rate of the SRP was 19.5%. Compared to the CP, the microbial richness and diversity index of SRP increased significantly. Chloroflexi, which is responsible for the degradation of organic substances under an anaerobic condition, seemed to be reduced in the SRP. Meanwhile, other phyla that involved in the nitrogen cycle, such as Nitrospirae and Planctomycetes, were found to be more abundant in the SRP than in the CP. A total of 21 identified classes were observed, and primarily hydrolyzed fermented bacteria (Sphingobacteriia, Betaproteobacteria, Actinobacteria and Deltaproteobacteria) and slow-growing microorganisms (Bacilli) were accumulated in the SRP. At the genus level, the inserted anaerobic side-stream reactor favored the hydrolyzed bacteria (Saprospiraceae, Rhodobacter and Candidatus_Competibacter), fermented bacteria (Lactococcus and Trichococcus), and slow-growing microorganisms (Dechloromonas and Haliangium), which play a crucial role in the sludge reduction. Furthermore, the enrichment of bacterial species related to nitrogen (Nitrospir and Azospira) provided the potential for nitrogen removal, while the anaerobic environment of the side-stream reactor promoted the enrichment of phosphorus-accumulating organisms.
Collapse
Affiliation(s)
- Xinqiang Ning
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Jialun Hu
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Jiao Yue
- School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
- Environmental Water Construction Co. Ltd., Chengdu Environment Group, Chengdu, 610000, China
| | - Tang Tang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Bin Zhang
- School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
5
|
Cheng Y, Lu C, Gao S, Koju R, Li H, Zhu Z, Hu C, Qu J. Synchronous in-situ sludge reduction and enhanced denitrification through improving electron transfer during endogenous metabolisms with Fe(Ⅱ) addition. WATER RESEARCH 2024; 255:121472. [PMID: 38552492 DOI: 10.1016/j.watres.2024.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, Guangxi 541004, China
| | - Rashmi Koju
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Zongqiang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, Guangxi 541004, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang H, Zhang W, Hou X, Tong J, Yu F, Yan Y, Wang L, Zhao B, Yan W, Li Y. Alternative states in microbial communities during artificial aeration: Proof of incubation experiment and development of recurrent neural network models. WATER RESEARCH 2023; 247:120828. [PMID: 37948904 DOI: 10.1016/j.watres.2023.120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Artificial aeration, a widely used method of restoring the aquatic ecological environment by enhancing the re-oxygenation capacity, typically relies upon empirical models to predict ecological dynamics and determine the operating scheme of the aeration equipment. Restoration through artificial aeration is involved in oxic-anoxic transitions, whether these transitions occurred in the form of a regime shift, making the development of predictive models challenging. Here, we confirmed the existence of alternative states in microbial communities during artificial aeration through aeration incubation experiment for the first time and considered its existence in neural network modeling in order to improve model performance. By aeration incubation experiment, it was confirmed that the alternative states exist in microbial communities during artificial aeration by two independent approaches, potential analysis and "enterotyping" approach. Comparing neural network models with and without considering the existence of alternative states, it was found that considering the existence of alternative states in modeling could improve the performance of neural network model. Our study provides a reference for the prediction of systems containing time series data where the current state will have an impact on later states. The developed model could be used for optimizing the operating scheme of the artificial aeration.
Collapse
Affiliation(s)
- Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Jiaxin Tong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuting Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
7
|
Zhao R, Gao H, Yu R. Dissolved oxygen benefits N-decanoyl-homoserine lactone regulated biological nitrogen removal system to resist acute ZnO nanoparticle exposure. ENVIRONMENTAL RESEARCH 2023; 228:115806. [PMID: 37004855 DOI: 10.1016/j.envres.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
The beneficial effects of N-decanoyl-homoserine lactone (C10-HSL), one of the typical N-acyl-homoserine lactones on biological nitrogen removal (BNR) system to resist the acute exposure of zinc oxide nanoparticles (ZnO NPs) has attracted extensive attentions. Nevertheless, the potential impact of dissolved oxygen (DO) concentration on the regulatory capacity of C10-HSL in the BNR system has yet to be investigated. This study conducted a systematic investigation of the impact of DO concentration on the C10-HSL-regulated BNR system against short-term ZnO NP exposure. Based on the findings, sufficient DO played a crucial role to improve the BNR system's resistance capacity to ZnO NPs. Under the micro-aerobic condition (0.5 mg/L DO), the BNR system was more sensitive to ZnO NPs. The ZnO NPs induced increased intracellular reactive oxygen species (ROS) accumulation, reduced antioxidant enzyme activities, and decreased specific ammonia oxidation rates in the BNR system. Furthermore, the exogenous C10-HSL had a positive effect on the BNR system's resistance to ZnO NP-induced stress, primarily by decreasing ZnO NPs-induced ROS generation and improving ammonia monooxygenase activities, especially under low DO concentrations. The findings contributed to the theoretical foundation for regulation strategy development of wastewater treatment plants under NP shock threat.
Collapse
Affiliation(s)
- Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
8
|
Zhou Z, Sun Y, Fu L, Zuo Y, Shao Y, Wang L, Zhou C, An Y. Unravelling roles of the intermediate settler in a microaerobic hydrolysis sludge in situ reduction process. BIORESOURCE TECHNOLOGY 2023:129228. [PMID: 37244312 DOI: 10.1016/j.biortech.2023.129228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
The roles of the intermediate settler in the sludge process reduction activated sludge process (SPRAS), and the influences of its hydraulic retention time (HRTST) on pollutant removal and sludge reduction were investigated. Prolonging HRTST from 3.0 to 4.5 and 6.0 h resulted in sludge reduction efficiencies increased from 46.8% to 61.5% and 62.7%. The sludge accumulation in the intermediate settler formed an anaerobic zone but inhibited methane production, and the alternating microaerobic and anaerobic environment in the sludge process reduction (SPR) module increased the microbial diversity and enriched the hydrolytic and fermentative bacteria. Prolonging HRTST accelerated dissolved organic matter release and elevated the degradation of refractory fraction, and improved the sludge properties of the SPRAS. Metagenomic analysis showed that the SPR module enhanced the glycolysis pathway and decoupling metabolism for sludge reduction. The results revealed that the intermediate settler plays dual roles in solid-liquid separation and sludge reduction metabolism.
Collapse
Affiliation(s)
- Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Li Fu
- Powerchina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
9
|
Jiang LM, Zhang Z, Li Y, Xu J, Wang K, Ding X, He J, Qiu Z, Zhou H, Zhou Z. Under-loaded operation of an anaerobic-anoxic-aerobic system in dry and wet weather dynamics to prevent overflow pollution: Impacts on process performance and microbial community. BIORESOURCE TECHNOLOGY 2023; 376:128837. [PMID: 36898557 DOI: 10.1016/j.biortech.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Effects of low hydraulic loading rate (HLR) in dry weather and high HLR in wet weather on pollutant removal, microbial community, and sludge properties of a full-scale wastewater treatment plant (WWTP) were extensively studied to explore the risk of under-loaded operation for overflow pollution control. Long-term low HLR operation had an insignificant effect on the pollutant removal performance of the full-scale WWTP, and the system could withstand high-load shocks in wet weather. Low HLR resulted in higher oxygen and nitrate uptake rate due to the storage mechanism under the alternating feast/famine condition, and lower nitrifying rate. Low HLR operation enlarged particle size, deteriorated floc aggregation and sludge settleability, and reduced sludge viscosity due to the overgrowth of filamentous bacteria and inhibition of floc-forming bacteria. The remarkable increase in Thuricola and the contract morphology of Vorticella in microfauna observation confirmed the risk of flocs disintegration in low HLR operation.
Collapse
Affiliation(s)
- Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhenjian Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunhui Li
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Jialei Xu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Kun Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinya Ding
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Hua Zhou
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
10
|
Hua B, Zhao S, Li F. Combined conditioning of inorganic coagulant and polyamine to improve the dewaterability of municipal sludge, minimize dosage and reduce the influence of filtrate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1600-1615. [PMID: 37051785 DOI: 10.2166/wst.2023.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Efficient dewatering of sludge is necessary for its cost-effective transportation and final disposal. However, the common method of using polyferric sulfate (PFS) and polyacrylamide (PAM) requires a large amount of dosage and produces high iron ion content in the filtrate. This study examined a solution of applying polyamine (PA) coupled with inorganic coagulant PFS. The results demonstrated that using PFS + PA together could achieve the same or similar filtering rates as using PFS + PAM. The capillary suction time (CST) of PFS + PA (89.0 s) was equivalent to that of PFS (75.1 s) and better than that of PA (117.1 s) and raw sludge (RS, 403.8 s). Compared with PFS + PAM, the combination of PFS and PA efficiently removed Fe ions and chemical oxygen demand (COD) in sludge water content, with Fe ions in the sludge filtrate reduced by 97.8% and COD reduced by 78.9%, respectively. By analyzing the basic physicochemical properties of the sludge system, including the synergistic effect of coagulation and flocculation, sludge hydrolysis and flocculation, it indicated that PA + PFS could reduce bound water. These results demonstrated that combining PFS and PA to improve sludge dewatering performance is more beneficial than utilizing a coagulant or flocculant alone, even PFS + PAM.
Collapse
Affiliation(s)
- Baolv Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail: ; ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Jiangsu Runyang Yueda Century Photovoltaic Technology Co., Ltd, Yancheng, Jiangsu 224007, People's Republic of China
| | - Shichao Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail: ; ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Fengting Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail: ; ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Present address: College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Zuo Y, Shao Y, Wang L, Sun Y, An Y, Jiang LM, Yu N, Hao R, Zhou C, Tao J, Zhou Z. Simultaneous sludge minimization and membrane fouling mitigation in membrane bioreactors by using a microaerobic - Settling pretreatment module. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116977. [PMID: 36495823 DOI: 10.1016/j.jenvman.2022.116977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Membrane fouling is the major obstacle for membrane bioreactors operated at a long sludge retention time to reduce sludge production. In this study, a sludge process reduction (SPR) module, consisting of a microaerobic tank and a settler, was inserted before an anoxic/oxic MBR (AO-MBR) to achieve dual objectives of fouling alleviation and sludge reduction. Three SPR-MBRs were operated to investigate influences of sludge recirculation ratios from the SPR settler to the microaerobic tank on process performance. Compared to AO-MBR, the SPR-MBRs reduced sludge production by 43.1-56.4% by maintaining sludge retention times above 175 d, and decreased foulant layer resistance and pore clogging resistance. Inserting SPR reduced the accumulation of dissolved organic matters and extracellular polymeric substances, enlarged sludge flocs, and decreased sludge viscoelasticity. However, increasing RSPR stimulated outward diffusion of extracellular polymeric substances and increased sludge viscosity. SPR-MBRs achieved effective sludge reduction by enriching hydrolytic (Trichococcus and Aeromonas) and fermentative genera (Lactococcus, Paludibacter, Macellibacteroides, and Acinetobacter) in the SPR, and alleviated membrane fouling by prohibiting the growth of extracellular polymeric substance-secreting bacteria and enriching filamentous bacteria to enlarge particle size. The results revealed that the SPR-MBR maximized sludge reduction with a very long sludge retention time, and alleviated membrane fouling synchronously.
Collapse
Affiliation(s)
- Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nan Yu
- Jinluo Water Co., Ltd, Linyi, 276600, China
| | - Rujie Hao
- Jinluo Water Co., Ltd, Linyi, 276600, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Jun Tao
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Zhu S, Deng J, Jin X, Wu H, Wei C, Qiu G, Preis S, Wei C. Diverse and distinct bacterial community involved in a full-scale A/O1/H/O2 combination of bioreactors with simultaneous decarbonation and denitrogenation of coking wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2103-2117. [PMID: 35930152 DOI: 10.1007/s11356-022-22103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Taking into account difficulties in exhaustive simultaneous decarbonation and denitrogenation in biological treatment of coking wastewater (CWW), a novel full-scale CWW biological treatment sequentially combining anaerobic, aerobic, hydrolytic, and aerobic reactors (A/O1/H/O2) was designed performing excellent removal of carbon-containing pollutants in the bioreactors A and O1, while the nitrogen-containing compounds in the bioreactors H and O2. To provide an effective tool for the CWW treatment monitoring and control, the succession of microbial community in this unique toxic CWW habitat should be established and characterized in detail. The results of 16S rRNA genes revealed Acidobacteria dominating in the unique CWW habitat. The dominant groups in bioreactors A and O1 include Proteobacteria, Firmicutes, and Acidobacteria, while Proteobacteria, Acidobacteria, Nitrospirae, and Planctomycetes dominate in reactors H and O2. The genera of Rhodoplanes, Bacillus, and Leucobacter are rich in genes responsible for the xenobiotics biodegradation and metabolism pathway. The Mantel test and PCA results showed the microbial communities of A/O1/H/O2 sequence correlating strongly with SRT, and COD load and removal. The co-occurrence network analysis indicated decarbonation and denitrogenation driven by two network modules having the keystone taxa belonging to the Comamonadaceae and Hyphomicrobiaceae families. The results significantly expanded the knowledge on the diversity, structure, and function of the CWW active sludge differentiating the relationships between bacterial communities and environmental variables in CWW treatment.
Collapse
Affiliation(s)
- Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
13
|
Shao Y, Zhou Z, Zuo Y, Jiang J, Wang L, Sun Y, He J, Qiu J, An Y, Jiang LM. Sludge decay kinetics and metagenomic analysis uncover discrepant metabolic mechanisms in two different sludge in situ reduction systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158346. [PMID: 36041603 DOI: 10.1016/j.scitotenv.2022.158346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
A comparative study was conducted between an anaerobic side-stream reactor (ASSR) process and a sludge process reduction (SPR) activated sludge (SPRAS) process for uncovering crucial metabolic mechanisms governing sludge reduction. Both of two processes were efficient in removing pollutants, while the SPRAS (62.3 %) obtained much higher sludge reduction than the ASSR (27.9 %). The highest rate coefficients of sludge decay, heterotroph lysis and particles hydrolysis were 0.106, 0.219 and 0.054 d-1 in the SPR module, followed by ASSR with coefficients of 0.060, 0.135 and 0.047 d-1. The SPR module achieved an 81.9 % higher sludge decay mass with a 32.8 % smaller volume than the ASSR module. The SPR module preferentially enriched hydrolytic/fermentative and slow-growing bacteria. Metagenomic analysis revealed that SPR strengthened the key hydrolases and L-lactate dehydrogenase in the glycolysis pathways and weakened the citrate cycle, inducing metabolic uncoupling due to the reduced biosynthesis of ATP. Inserting ASSR only altered the ATP biosynthesis pathway, but maintenance metabolism was dominant for sludge reduction, with a long sludge retention time prolonging the food chain for predation.
Collapse
Affiliation(s)
- Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Qiu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
14
|
Waste carbon conversion and utilization in chemical wastewater treatment process: Experimental approaches from lab-to pilot-scale. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Morello R, Di Capua F, Esposito G, Pirozzi F, Fratino U, Spasiano D. Sludge minimization in mainstream wastewater treatment: Mechanisms, strategies, technologies, and current development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115756. [PMID: 35982561 DOI: 10.1016/j.jenvman.2022.115756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Excess sludge production in wastewater treatment plants has become an enormous environmental issue worldwide mainly due to the increased efforts towards wastewater purification. Researchers and plant operators are looking for technological solutions to reduce sludge production through the upgrading of existing technologies and configurations or by substituting them with alternative solutions. Several strategies have been identified to reduce sludge production, including the use of biological and physical-chemical methods (or a combination of them) and novel technologies, although many have not been sufficiently tested at full-scale. To select the most suitable system for sludge reduction, understanding the reduction mechanisms, advantages, disadvantages, and the economic and environmental impact of each technology is essential. This work offers a comprehensive and critical overview of mainstream sludge reduction technologies and underlying mechanisms from laboratory to full scale, and describes potential application, configuration, and integration with conventional systems. Research needs are highlighted, and a techno-economic-environmental comparison of the existing technologies is also proposed.
Collapse
Affiliation(s)
- Raffaele Morello
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy; Department of Agricultural and Environmental Sciences (Di.S.A.A.T), University of Bari, Via Amendola165/A, 70126 Bari, Italy
| | - Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Umberto Fratino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Danilo Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
16
|
Zhao X, Lan Z, Yang J, Chen G, Qiu Z, Wu J, Zeng L, Wu W, Liang J, Zhou Z. Insights into the dewatering of excavated landfill sludge conditioned by polyferric silicate sulfate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115147. [PMID: 35490485 DOI: 10.1016/j.jenvman.2022.115147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Large quantities of landfill sludge (LS) with higher water content (WC) were stored underground, and excavation and re-dewatering of LS is a sustainable and economic strategy to save landfill space and reduce the leaching of contaminants. In this study, polyferric silicate sulfate (PFSS) was first applied in the conditioning of excavated LS, and the effects of the Si/Fe mass ratio and PFSS dosage on physicochemical properties, dewaterability and rheological properties were investigated. At the best Si/Fe of 0.18, PFSS conditioning obtained compact aggregates with the strongest internal structure, thus achieving the lowest WC. Large sludge flocs were formed, and slime and loosely-bound extracellular polymeric substances were effectively removed with the PFSS dosage above 100 mg/g dried solids, which made the WC to be lower than 51.4%. The whole mechanical compression process of conditioned LS can be described by the modified Terzaghi-Voigt model, and increasing the PFSS dosage induced the release of bound water and migration of the consolidation stage from ternary to secondary. PFSS is an economically sustainable conditioner for LS, integrating multiple functions such as charge neutralization, particle aggregation, interparticle bridging and skeleton building in one chemical.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Ziwei Lan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jiazhe Yang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai, 201203, China
| | - Zhan Qiu
- Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai, 201203, China
| | - Jun Wu
- Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai, 201203, China
| | - Li Zeng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wei Wu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Junyu Liang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Chen A, Zhang D, Wang H, Cui R, Khoshnevisan B, Guo S, Wang P, Liu H. Shallow groundwater fluctuation: An ignored soil N loss pathway from cropland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154554. [PMID: 35302037 DOI: 10.1016/j.scitotenv.2022.154554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution originating from agricultural land is among the major threats to shallow groundwater (SG). Soil N losses due to the SG table fluctuation are neglected, although a large number of studies have been conducted to evaluate N losses through leaching and runoff. Herein, the characteristics of N losses driven by SG table fluctuation were investigated using the microcosm experiment and surveyed data from the croplands around Erhai Lake. According to the results achieved, the total N (TN) loss mainly occurred during the initial 12 days when the soil was flooded, then presented N immobilized by soil and finally, basically balanced between influent and effluent after 50 days. The results demonstrated that 1.7% of the original soil TN storage (0-100 cm) was lost. The alternation of drying and flooding could greatly increase TN loss up to 1086 kg hm-2, which was 2.72 times as much as that of continuous flooding flow. The amount of soil N losses to groundwater was closely related to the soil profile biochemical characteristics (water content, soil microbial immobilization, mineralization, nitrification, and denitrification processes). Soil N loss from crop fields driven by SG table fluctuation is 26 and 6 times of the runoff and leaching losses, respectively, while the soil N loss from the vegetable fields is 33 and 4 times of the runoff and leaching losses. The total amount of N losses from the croplands around the Erhai Lake caused by flooding of shallow groundwater (SG) in 2016 was estimated at 3506 Mg. The estimations showed that N losses would decrease by 16% if vegetables are replaced with staple food crops. These results imply that the adjustment of the planting structure was the key measure to reduce soil N storage and mitigate groundwater contamination.
Collapse
Affiliation(s)
- Anqiang Chen
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Dan Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyuan Wang
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Rongyang Cui
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, Sichuan Province, China
| | - Benyamin Khoshnevisan
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark
| | - Shufang Guo
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Panlei Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Li C, Maqbool T, Kang H, Zhang Z. In-Situ Sludge Reduction in Membrane-Controlled Anoxic-Oxic-Anoxic Bioreactor: Performance and Mechanism. MEMBRANES 2022; 12:membranes12070659. [PMID: 35877863 PMCID: PMC9321052 DOI: 10.3390/membranes12070659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Conventional and advanced biological wastewater treatment systems generate excess sludge, which causes socio-economic and environmental issues. This study investigated the performance of membrane-controlled anoxic-oxic-anoxic (AOA) bioreactors for in-situ sludge reduction compared to the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol). The membrane units in the AOA bioreactors were operated as anoxic reactors at lower sludge recirculation rates to achieve hydrolysis of extracellular polymeric substances (EPS) and extensive endogenous respiration. Compared to MBRcontrol, the AOA bioreactors operated with 90%, and 80% recirculation rates reduced the sludge growth up to 19% and 30%, respectively. Protein-like components were enriched in AOA bioreactors while fulvic-like components were dominant in MBRcontrol. The growth of Dechloromonas and Zoogloea genra was promoted in AOA bioreactors and thus sludge reduction was facilitated. Metagenomics analysis uncovered that AOA bioreactors exhibited higher proportions of key genes encoding enzymes involved in the glycolysis and denitrification processes, which contributed to the utilization of carbon sources and nitrogen consumption and thus sludge reduction.
Collapse
Affiliation(s)
- Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongyu Kang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
19
|
Xiao N, Wang B, Huang JJ, Huang Z, Shi L. Aeration strategy based on numerical modelling and the response mechanism of microbial communities under various operating conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114752. [PMID: 35231691 DOI: 10.1016/j.jenvman.2022.114752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Aeration system is the main energy consumer in a wastewater treatment process. In this paper, the Naive Bayes classification (NBC) algorithm and response surface method (RSM) were firstly used to establish a methodology to improve the aeration efficiency and estimate effluent quality. Lab-scale experiments were conducted to verify the model. The errors between experimental values and predicted values were 3.36, -0.67 and -3.78% at operating temperatures of 20, 30 and 35 °C, indicating the applicability. To further elucidate the biological mechanisms of the experimental results, the microbial community composition was investigated under various operating conditions, the results shows that aerobic heterotrophic bacteria (HET) activity and COD removal efficiency were promoted at 30 °C. AOB and NOB activity and NH4+-N removal efficiency were promoted at 30-35 °C. These findings together suggest that operating temperature is crucial for activated sludge treatment, which should be considered when regulating DO content or aeration rate in practical application.
Collapse
Affiliation(s)
- Nan Xiao
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China
| | - Bing Wang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China
| | - Jeanne Jinhui Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China.
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, PR China
| | - Liuyang Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, PR China
| |
Collapse
|
20
|
Apollo S. A review of sludge production in South Africa municipal wastewater treatment plants, analysis of handling cost and potential minimization methods. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The government of South Africa through the department of water and sanitation has installed numerous activated sludge systems in most of the municipal wastewater treatment plants (MWWTPs) to ensure adequate sanitation. However, secondary sludge generation and handling is a major challenge of the AS process. This work reviews the sludge production potential in selected regions in South Africa including Midvaal, Emfuleni and Lesedi municipalities. Further, the sludge handling cost and potential methods of sludge minimization are discussed. This study found that the selected MWWTPs discharge effluent volume of between 3 and 65 ML/day with average COD of about 350 mg/L leading to sludge production of between 5 and 23 tons/day with an estimated handling cost of €57,000 to €320,000 per year. Some of the technologies reviewed for sludge minimization to cut down plant operation cost include chemical oxidation using ozone and potassium ferrate (K2FeO4), application of oxic-settling-anaerobic (OSA) process, anaerobic/anoxic/oxic (AAO) combined with K2FeO4 oxidation side stream reactor (SSR), SANI® technology and use of anaerobic side stream reactor (ASSR) in the conventional activated sludge (AS) line.
Collapse
Affiliation(s)
- Seth Apollo
- Department of Chemical Engineering , Vaal University of Technology , Private Bag X21 , Vanderbijlpark , South Africa
- Department of Physical Sciences , University of Embu , P.O. Box 6-60100 , Embu , Kenya
| |
Collapse
|
21
|
Qian Z, Zhuang S, Gao J, Tang L, Harindintwali JD, Wang F. Aeration increases soil bacterial diversity and nutrient transformation under mulching-induced hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153017. [PMID: 35026241 DOI: 10.1016/j.scitotenv.2022.153017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/22/2023]
Abstract
Soil oxygen (O2) deficiency induced by organic mulching is easy to overlook. Aeration has been shown to potentially alleviate soil hypoxia stress. However, the responses of soil bacterial communities to such mulching-induced hypoxic conditions and aeration remain elusive. Therefore, a three-year field experiment, consisting of mulching (T1), mulching with aeration (TA1, poor aeration; TA2, strong aeration), and no-mulching (CK) treatments, was conducted in bamboo (Phyllostachys praecox) plantations. According to our results, the strong aeration treatment (TA2) alleviated soil acidification, increased soil nutrient availability, and significantly increased soil O2 content by 18.44% (P < 0.05) when compared with T1. In addition, TA2 significantly increased soil β-glucosidase, invertase, urease, and acid phosphatase activities compared with CK and T1 (P < 0.05). The alpha diversity indices with TA2 treatment were the highest, indicating that aeration increased the species richness and diversity of bacteria. The changes in bacterial community composition associated with TA2 treatment (i.e., an increase in Firmicutes, Verrucomicrobia, and Faecalibacterium abundance and a decrease in Chloroflexi and Bradyrhizobium abundance) were mainly related to nutrient and O2 content. Mantel Test results suggested that soil O2 content and temperature were the key factors shaping bacterial community composition. Structural equation modeling revealed that soil O2 content had a positive and direct influence on bacterial community diversity. Functional annotation of prokaryotic taxa predicted that TA2 significantly increased the relative abundance of bacterial communities associated with nitrification, nitrogen fixation, and ureolysis. Our results demonstrated that optimal soil aeration conditions (17.60% of O2 content) could enhance the diversity and function of soil bacterial communities. Overall, the findings of this study could serve as a benchmark for alleviating soil hypoxia caused by organic mulches, which is important for increasing the functionality of nutrient cycling bacterial communities in the soil.
Collapse
Affiliation(s)
- Zhuangzhuang Qian
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Luozhong Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jean Damascene Harindintwali
- University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fang Wang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
22
|
Cheng Y, Tian K, Xie P, Ren X, Li Y, Kou Y, Chon K, Hwang MH, Ko MH. Insights into the minimization of excess sludge production in micro-aerobic reactors coupled with a membrane bioreactor: Characteristics of extracellular polymeric substances. CHEMOSPHERE 2022; 292:133434. [PMID: 34973254 DOI: 10.1016/j.chemosphere.2021.133434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The production of excess sludge by the activated sludge system of wastewater treatment plants is a problem. In this study, the EPS characteristics on production and degradation were investigated in the real-scale food processing wastewater treatment system (i.e., a micro-aerobic reactor coupled with a membrane bioreactor (MAR-MBR)) with a treatment capacity of 150 t d-1, which could cater for the low production of excess sludge (i.e., 9 t·a-1; 76% moisture content). The total organic carbon concentrations in the different EPS fractions were in the following order: soluble EPS (S-EPS) < loosely bound EPS (LB-EPS) < tightly bound EPS (TB-EPS). Although the components (e.g., protein and humic acid-like substances) of each EPS fraction changed significantly throughout the MAR-MBR process owing to the low production of excess sludge, the degrees of change in S-EPS, LB-EPS, and TB-EPS were significantly different from the corresponding change in their relative molecular weights. Furthermore, the microbial community composition was beneficial for the release and degradation of EPS, and the regulation of gene functions via the MAR-MBR enhanced this process.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kun Tian
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Xie
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xianghao Ren
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Ying Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yingying Kou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Moon-Hyun Hwang
- Korea Headquarters of Research Plan, Korea University, Seoul, 02841, Republic of Korea
| | - Myung-Han Ko
- ANT21, 34, Gyebaek-ro, Jung-gu, Daejeon, 34899, Republic of Korea
| |
Collapse
|
23
|
Sodhi V, Bansal A, Jha MK. Effect of extracellular polymeric compositions on in-situ sludge minimization performance of upgraded activated sludge treatment for industrial wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114516. [PMID: 35051823 DOI: 10.1016/j.jenvman.2022.114516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The sludge yield minimization from advanced biological treatment for industrial wastewater could be considered a poorly explored area, therefore, seeks serious attention of the scientific community. Up to best of the knowledge, the extracellular polymeric substances (EPS) profile underlying an upgraded activated sludge treatment (as MANODOX system) for real tannery wastewater has not been addressed in a desired manner. This study covers the elucidation of EPS degradation mechanism and floc morphology underlying MANODOX system for the treatment of real tannery influent. For this purpose, a modified heat extraction method was followed for the estimation of EPS fractions like protein (PN), polysaccharides (PS) and humic contents from the sludge. For the present investigation, the variation in floc characteristics including PN/PS ratio, sludge hydrophobicity, sludge volume index, and facultative microbiota at corresponding change in hydrodynamic sludge retention time (SRT) of 08-40 days was emphasized. The strict maintenance of adapted operational strategies including favoring range of SRT (24 days) for MANODOX implementation succeeded an outstanding in-situ sludge yield minimization lowered up to 0.39 gMLSS/gTCOD that attributed to three times lowered accumulation of PN and PS, comparably lower PN/PS ratio, higher salinity of the mixed liquid, weakened cell-to-cell attachment compared with a parallel run identical aerobic treatment. Here, the reason for improved hydrophobicity and corresponding decline in floc aggregation was attributed to change in sludge PN/PS ratio, carbon to nitrogen ratio of feed influent. The observations confirmed that the sludge yield minimization from MANODOX like systems could be effectively controlled by maintaining aforementioned operational tactics.
Collapse
Affiliation(s)
- Vijay Sodhi
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar City, India; Climate Change Knowledge Center, Punjab State Council for Science & Technology, Chandigarh City, India.
| | - Ajay Bansal
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar City, India.
| | - Mithilesh Kumar Jha
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar City, India.
| |
Collapse
|
24
|
Chen HY, Li XK, Meng L, Liu G, Ma X, Piao C, Wang K. The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127352. [PMID: 34740157 DOI: 10.1016/j.jhazmat.2021.127352] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment.
Collapse
Affiliation(s)
- Hong-Ying Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Lingwei Meng
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| | - Gaige Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Xiaochen Ma
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chenyu Piao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Xie Y, Spiller M, Vlaeminck SE. A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers: Mineralization and nitrification performance complemented with economic aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150415. [PMID: 34852428 DOI: 10.1016/j.scitotenv.2021.150415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Due to the high water- and nutrient-use efficiency, hydroponic cultivation is increasingly vital in progressing to environment-friendly food production. To further alleviate the environmental impacts of synthetic fertilizer production, the use of recovered nutrients should be encouraged in horticulture and agriculture at large. Solid organic fertilizers can largely contribute to this, yet their physical and chemical nature impedes application in hydroponics. This study proposes a bioreactor for mineralization and nitrification followed by a supplementation step for limiting macronutrients to produce nitrate-based solutions from solid fertilizers, here based on a novel microbial fertilizer. Batch tests showed that aerobic conversions at 35 °C could realize a nitrate (NO₃--N) production efficiency above 90% and a maximum rate of 59 mg N L-1 d-1. In the subsequent bioreactor test, nitrate production efficiencies were lower (44-51%), yet rates were higher (175-212 mg N L-1 d-1). Calcium and magnesium hydroxide were compared to control the bioreactor pH at 6.0 ± 0.2, while also providing macronutrients for plant production. A mass balance estimation to mimic the Hoagland nutrient solution showed that 92.7% of the NO₃--N in the Ca(OH)₂ scenario could be organically sourced, while this was only 37.4% in the Mg(OH)₂ scenario. Besides, carbon dioxide (CO₂) generated in the bioreactor can be used for greenhouse carbon fertilization to save operational expenditure (OPEX). An estimation of the total OPEX showed that the production of a nutrient solution from solid organic fertilizers can be cost competitive compared to using commercially available liquid inorganic fertilizer solutions.
Collapse
Affiliation(s)
- Yankai Xie
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Marc Spiller
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium.
| |
Collapse
|
26
|
Jiang L, Liu Y, Guo F, Zhou Z, Jiang J, You Z, Wang Q, Wang Z, Wu Z. Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/aerobic membrane bioreactor with limited aeration. BIORESOURCE TECHNOLOGY 2021; 340:125728. [PMID: 34385130 DOI: 10.1016/j.biortech.2021.125728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study proposes a novel strategy to obtain high-efficiency synchronous removal of nitrogen and phosphorus from wastewater by the limited-aeration anaerobic/anoxic/aerobic membrane bioreactor (AAO-MBR) and evaluates its resource recovery potential. Effects of membrane flux on pollutants removal and membrane fouling were investigated, and the optimal flux of 30 L/(m2·h) was obtained with efficient nitrogen and phosphorus removal of 81.5 ± 6.1% and 96.7 ± 2.1%. Compared with traditional and chemical-aided AAO-MBRs, limited-aeration AAO-MBR also alleviated membrane fouling by enlarging sludge flocs, improved sludge activities, and enriched the functional bacteria and genes. The sludge denitrification activity and phosphorus uptake activity of the limited-aeration AAO-MBR were 1.7 and 4.2 times as those of the traditional AAO-MBR. Low-temperature sludge pyrolysis results showed that sludge from limited-aeration AAO-MBR had higher nutrient storage and release capacity. This study proved the efficient nutrient removal capacity and high resource recovery potential of the limited-aeration AAO-MBR process.
Collapse
Affiliation(s)
- Lingyan Jiang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China; Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Yun Liu
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| | - Fanjin Guo
- Xiamen Urban Planning and Design Institute, Xiamen 361001, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhangchao You
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| | - Qiaoying Wang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China.
| | - Zhiwei Wang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| | - Zhichao Wu
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| |
Collapse
|
27
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Liu X, Hu S, Sun R, Wu Y, Qiao Z, Wang S, Zhang Z, Cui C. Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148245. [PMID: 34380284 DOI: 10.1016/j.scitotenv.2021.148245] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 05/23/2023]
Abstract
No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zehong Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chuwen Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
29
|
Cohen Y, Pasternak Z, Müller S, Hübschmann T, Schattenberg F, Sivakala KK, Abed-Rabbo A, Chatzinotas A, Jurkevitch E. Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems. Nat Commun 2021; 12:5481. [PMID: 34531395 PMCID: PMC8446003 DOI: 10.1038/s41467-021-25824-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
A fundamental question in community ecology is the role of predator-prey interactions in food-web stability and species coexistence. Although microbial microcosms offer powerful systems to investigate it, interrogating the environment is much more arduous. Here, we show in a 1-year survey that the obligate predators Bdellovibrio and like organisms (BALOs) can regulate prey populations, possibly in a density-dependent manner, in the naturally complex, species-rich environments of wastewater treatment plants. Abundant as well as rarer prey populations are affected, leading to an oscillating predatory landscape shifting at various temporal scales in which the total population remains stable. Shifts, along with differential prey range, explain co-existence of the numerous predators through niche partitioning. We validate these sequence-based findings using single-cell sorting combined with fluorescent hybridization and community sequencing. Our approach should be applicable for deciphering community interactions in other systems.
Collapse
Affiliation(s)
- Yossi Cohen
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Division of Identification and Forensic Science, Israel Police, National Headquarters, Jerusalem, Israel
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Kunjukrishnan Kamalakshi Sivakala
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
- Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
30
|
Ortiz-Ardila AE, Díez B, Celis C, Jenicek P, Labatut R. Microaerobic conditions in anaerobic sludge promote changes in bacterial composition favouring biodegradation of polymeric siloxanes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1182-1197. [PMID: 34302159 DOI: 10.1039/d1em00143d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Volatile organic silicon compounds (VOSiC) are harmful pollutants to the biota and ecological dynamics as well as biogas-based energy conversion systems. However, there is a lack of understanding regarding the source of VOSiCs in biogas, especially arising from the biochemical conversion of siloxane polymers such as polydimethylsiloxanes (PDMS). The biodegradation of PDMS was evaluated under anaerobic/microaerobic conditions (PO2 = 0, 1, 3, 5%), using wastewater treatment plant (WWTP) sludge as an inoculum and PDMS as a co-substrate (0, 50, 100, 500 ppm). On average, strictly anaerobic treatments produced significantly less methane than the 3 and 5% microaerated ones, which show the highest PMDS biodegradation at 50 ppm. Thauera sp. and Rhodococcus sp. related phylotypes were identified as the most abundant bacterial groups in microaerated treatments, and siloxane-related molecules were identified as remnants of PDMS catabolism. Our study demonstrates that microaeration promotes changes to the native bacterial community which favour the biological degradation of PDMS. This confirms that the presence of VOSiC (e.g., D4-D6) in biogas is not only due to its direct input in wastewaters, but also to the PDMS microbial catabolism. Microaerobic conditions enhance both PDMS and (subsequent) VOSiC degradation in the liquid phase, increasing the concentrations of D4 and D5 in biogas, and the production of less toxic siloxane-based derivatives in the liquid phase. This study suggests that microaeration of the anaerobic sludge can significantly decrease the concentration of PDMSs in the WWTP effluent. However, for WWTPs to become effective barriers for the emission of these ecotoxic contaminants to the environment, such a strategy needs to be coupled with an efficient biodegradation of VOSiCs from the biogas.
Collapse
Affiliation(s)
- A E Ortiz-Ardila
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
31
|
Cheng C, Geng J, Hu H, Shi Y, Gao R, Wang X, Ren H. In-situ sludge reduction performance and mechanism in an anoxic/aerobic process coupled with alternating aerobic/anaerobic side-stream reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145856. [PMID: 33677286 DOI: 10.1016/j.scitotenv.2021.145856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Activated sludge process with anaerobic side-stream reactors (SR) in the sludge recirculation can achieve in-situ sludge reduction, but sludge reduction efficiency is limited with the low hydraulic retention time (HRT) of SR. An anoxic/aerobic (AO) process, AO coupled with anaerobic SR and AO coupled with alternating aerobic/anaerobic side-stream reactor (AO-OASR) were operated to investigate enhancing effects of alternative aerobic and anaerobic condition (AltOA) in SR on sludge reduction and pollutants removal performance. The AltOA was firstly proposed into SR with a low HRT during the long-term continuous operation. The results showed that AO-OASR presented a lower effluent COD concentration (29.6%) with no adverse effect on nitrogen removal, compared to AO, owing to the intensified refractory carbon reuse in the mainstream aerobic tank. The sludge yield in AO-OASR (0.240 g SS/g COD) was 39.7% lower than that in AO. The OASR accelerated sludge lysis and particle organic matter hydrolysis due to the weakened network strength of flocs, leading to an enhanced increase (17.3 mg/L) of dissolved organic matter (DOM), especially for the fraction of molecular weight (MW) < 25 kDa. The OASR reduced the adenosine triphosphate (ATP) content for heterotrophic anabolism in the mainstream reactor by 42.9%, compared to the ASR. MW < 25 kDa of DOM caused the disturbance of oxidative phosphorylation with a decreasing ATP synthase activity under high-level electronic transport system, leading to ATP dissipation. The cooperation interaction of predator (norank_Chitinophagales), hydrolytic/fermentative bacteria (unclassified_Bacteroidia and Delftia), and slow grower (Trichococcus) played a key role in improving the sludge reduction and carbon reuse in AO-OASR. The results provided an efficient and cost-saving technology for sludge reduction with modified SR under low HRT, which is meaningful to overcome the present bottleneck of deficient reduction efficiency for application in wastewater treatment plants.
Collapse
Affiliation(s)
- Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Protection Research Institute, Nanjing University, Nanjing 214200, Jiangsu, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yihan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Rongwei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Protection Research Institute, Nanjing University, Nanjing 214200, Jiangsu, China.
| |
Collapse
|
32
|
Chen G, Wu W, Xu J, Wang Z. An anaerobic dynamic membrane bioreactor for enhancing sludge digestion: Impact of solids retention time on digestion efficacy. BIORESOURCE TECHNOLOGY 2021; 329:124864. [PMID: 33631451 DOI: 10.1016/j.biortech.2021.124864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
An anaerobic dynamic membrane bioreactor (AnDMBR), which enabled the decoupling of hydraulic retention time (HRT) and solids retention time (SRT), was used for enhancing sludge digestion, with the associated mechanisms elucidated. With the increase of SRT, the biogas production and sludge reduction rate were both enhanced. The specific biogas production and volatile solids (VS) reduction rate were improved to 0.79 L/g VS and 55.9% under SRT 50 d, respectively. Microbial community analysis revealed that Chloroflexi, which is capable of degrading metabolites and dead cells, was enriched at longer SRT. Further analysis showed that both acetoclastic and hydrogenotrophic methanogenesis contributed to the enhanced biogas production under higher SRT compared to the dominance of acetoclastic methanogenesis under lower SRT. The enhanced utilization of organic matter and acetate at longer SRT further confirmed the mechanisms. The results highlighted the potential of AnDMBR for high-efficient sludge digestion.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai 201203, China
| | - Wei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School and Environment of Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
33
|
Wang N, Chen X, Ji Y, Yan W, Chui C, Liu L, Shi J. Enhanced sludge reduction during swine wastewater treatment by the dominant sludge-degrading strains Chryseobacterium sp. B4 and Serratia sp. H1. BIORESOURCE TECHNOLOGY 2021; 330:124983. [PMID: 33761451 DOI: 10.1016/j.biortech.2021.124983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Sludge reduction is considered a main target for sludge treatment and an urgent issue for wastewater treatment. In this study, two dominant sludge-degrading strains, identified as Chryseobacterium sp. B4 and Serratia sp. H1, were used for inoculation in swine wastewater treatment to investigate the enhancement of sludge reduction. The results showed the volatile suspended solid (VSS) removal rate in experimental groups inoculated with Chryseobacterium sp. B4, Serratia sp. H1, and a combination of the two strains improved by 49.4%, 11.0%, and 30.5%, compared with the control with no inoculation. Furthermore, microbial community structure and functional prediction analyses indicated Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria could play an essential role in sludge reduction, and the dominant sludge-degrading strains B4 and H1 enhanced sludge reduction by strengthening carbohydrate, nucleotide, amino acid, and lipid metabolism and membrane transport functions. This study provides new insights into sludge reduction during wastewater treatment with dominant sludge-degrading strains.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuji Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhi Yan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmeng Chui
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
34
|
Chen R, Liang H, Wang J, Lin D, Zhang H, Cheng X, Tang X. Effects of predator movement patterns on the biofouling layer during gravity-driven membrane filtration in treating surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145372. [PMID: 33548719 DOI: 10.1016/j.scitotenv.2021.145372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Biological predation has a significant effect on biofouling layers in gravity-driven membrane (GDM) filtration systems. However, the detailed process of predatory activities is still not well known. This study explored the effects of predator movement patterns on the biofouling layer at different temperatures and the factors affecting the stable flux level. The results indicated that Demospongiae, Spirotrichea and Saccharomycetes were the main species, with the body contracting or rotating in one position at 5 °C, and Litostomatea accounted for 55.1% at 10 °C. The weak agility of these species resulted in a less porous biofouling layer with a high extracellular polymeric substance (EPS) concentration, which was responsible for the low permeate flux and the time to reach flux stability. Bdelloidea was dominant at 20 and 30 °C, and the more heterogeneous biofouling layer with a lower EPS concentration was related to their intense creeping and swimming movements and their ability to create current in the water. The grazing of spongy flocs by predators affected the GDM system performance, and a high stable flux was obtained with large and loose flocs. In addition, the diversity of the eukaryotic community decreased after the flux stabilized due to the particular predominance of Bdelloidea at high temperatures, corresponding to a high stable flux. Pollutant removal was less affected by eukaryotes, and decreased ammonia nitrogen removal rates were related to the lower activity of nitrifying bacteria. Moreover, the reliable linear correlation between the temperature and the stable flux implied that the stable flux could be well predicted in the GDM system. The findings are beneficial for developing new strategies for regulating flocs and the biofouling layer to improve the performance of GDM systems.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
35
|
Xu R, Fan F, Lin Q, Yuan S, Meng F. Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6270-6280. [PMID: 33830745 DOI: 10.1021/acs.est.0c07891] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
36
|
Yang F, Zheng Y, Tian X, Liu Y, Li J, Shao Z, Zhao F. Redox cycling of manganese by Bacillus horikoshii biET1 via oxygen switch. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Performance Analysis and Microbial Community Evolution of In Situ Biological Biogas Upgrading with Increasing H 2/CO 2 Ratio. ACTA ACUST UNITED AC 2021; 2021:8894455. [PMID: 33628124 PMCID: PMC7889367 DOI: 10.1155/2021/8894455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/27/2020] [Accepted: 01/15/2021] [Indexed: 01/04/2023]
Abstract
The effect of the amount of hydrogen supplied for the in situ biological biogas upgrading was investigated by monitoring the process and evolution of the microbial community. Two parallel reactors, operated at 37°C for 211 days, were continuously fed with sewage sludge at a constant organic loading rate of 1.5 gCOD∙(L∙d)−1 and hydrogen (H2). The molar ratio of H2/CO2 was progressively increased from 0.5 : 1 to 7 : 1 to convert carbon dioxide (CO2) into biomethane via hydrogenotrophic methanogenesis. Changes in the biogas composition become statistically different above the stoichiometric H2/CO2 ratio (4 : 1). At a H2/CO2 ratio of 7 : 1, the methane content in the biogas reached 90%, without adversely affecting degradation of the organic matter. The possibility of selecting, adapting, and enriching the original biomass with target-oriented microorganisms able to biologically convert CO2 into methane was verified: high throughput sequencing of 16S rRNA gene revealed that hydrogenotrophic methanogens, belonging to Methanolinea and Methanobacterium genera, were dominant. Based on the outcomes of this study, further optimization and engineering of this process is feasible and needed as a means to boost energy recovery from sludge treatment.
Collapse
|
38
|
Yuan Y, Zhou Z, Jiang J, Wang K, Yu S, Qiang J, Ming Q, An Y, Ye J, Wu D. Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment. BIORESOURCE TECHNOLOGY 2021; 320:124419. [PMID: 33242685 DOI: 10.1016/j.biortech.2020.124419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Effects of salinity level and gradient on partial nitrification performance, sludge properties and microbial activities were investigated using partial nitrification membrane bioreactors (PN-MBRs). PN-MBRs obtained stable nitrite accumulation rate of 91.1% and ammonia removal of 64.8% at 10 g/L NaCl. 10 g/L NaCl obtained higher oxygen uptake rate than 5 g/L, and promoted the differentiation of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. Salinity increased sludge flocs size, stimulated secretion of extracellular polymeric substances with high carbohydrates contents, but had insignificant impact on sludge settleability and dewaterability. Salt level and gradient were both important for microbial community evolution to salt-tolerant bacteria. PN-MBRs enriched aerobic AOBs (Nitrosomonas and norank_f_Nitrosomonadaceae) and anaerobic AOBs (Candidatus_Kuenenia and Candidatus_Brocadia) for partial nitrification, while salt gradients resulted in different metabolism pathways for nitrification even at the same salinity. Increasing salinity promoted hydroxylamine oxidizer in nitrification process evolving from Candidatus_Kuenenia and Candidatus_Brocadia to aerobic AOBs.
Collapse
Affiliation(s)
- Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qiang Ming
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Deli Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
39
|
Deng J, Zhang B, Xie J, Wu H, Li Z, Qiu G, Wei C, Zhu S. Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system. PLoS One 2020; 15:e0243748. [PMID: 33301488 PMCID: PMC7728250 DOI: 10.1371/journal.pone.0243748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
The pre-aerobic process of coking wastewater treatment has strong capacity of decarbonization and detoxification, which contribute to the subsequent dinitrogen of non-carbon source/heterotrophic denitrification. The COD removal rate can reach > 90% in the first aerobic bioreactor of the novel O/H/O coking wastewater treatment system during long-term operation. The physico-chemical characteristics of influent and effluent coking wastewater in the first aerobic bioreactor were analyzed to examine how they correlated with bacterial communities. The diversity of the activated sludge microbial community was investigated using a culture-independent molecular approach. The microbial community functional profiling and detailed pathways were predicted from the 16S rRNA gene-sequencing data by the PICRUSt software and the KEGG database. High-throughput MiSeq sequencing results revealed a distinct microbial composition in the activated sludge of the first aerobic bioreactor of the O/H/O system. Proteobacteria, Bacteroidetes, and Chlorobi were the decarbonization and detoxification dominant phyla with the relative abundance of 84.07 ± 5.45, 10.89 ± 6.31, and 2.96 ± 1.12%, respectively. Thiobacillus, Rhodoplanes, Lysobacter, and Leucobacter were the potential major genera involved in the crucial functional pathways related to the degradation of phenols, cyanide, benzoate, and naphthalene. These results indicated that the comprehensive understanding of the structure and function diversity of the microbial community in the bioreactor will be conducive to the optimal coking wastewater treatment.
Collapse
Affiliation(s)
- Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
40
|
Liu Y, Wang N, Wei Y, Dang K, Li M, Li Y, Li Q, Mu R. Pilot study on the upgrading configuration of UASB-MBBR with two carriers: Treatment effect, sludge reduction and functional microbial identification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Yang S, Wen Q, Chen Z. Impacts of Cu and Zn on the performance, microbial community dynamics and resistance genes variations during mesophilic and thermophilic anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 312:123554. [PMID: 32460007 DOI: 10.1016/j.biortech.2020.123554] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, fate of antibiotic resistance genes (ARGs), heavy metal resistance genes (MRGs) and intI1 were investigated during mesophilic (mAD) and thermophilic anaerobic digestion (tAD) of swine manure with presence of Cu and Zn. Results showed that metal reduced the lag phase time. Cu showed stronger inhibition than Zn on archaea community and metals inhibited the growth of acetoclastic methanogens during mAD. Although total concentration of metals increased after AD, they were transformed into stable state. The abundance of qnrS, sul1, sul2 and drfA7 increased 1.2-5.7 times after mAD, while reduced after tAD, showed that tAD was effective in ARGs removal. Structural equation model analysis suggested that intI1 had the most standardized direct effects on ARGs variation in mAD (R = 0.85, p < 0.01), while the co-occurrence of MRGs with ARGs showed significantly positive influences on ARGs variation in tAD (R = 0.82, p < 0.01).
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
42
|
Zheng Y, Zhou Z, Jiang L, Huang J, Jiang J, Chen Y, Shao Y, Yu S, Wang K, Huang J, Wang Z. Evaluating influence of filling fraction of carriers packed in anaerobic side-stream reactors on membrane fouling and microbial community of the coupled membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122030. [PMID: 31954301 DOI: 10.1016/j.jhazmat.2020.122030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
An anoxic/oxic membrane bioreactors (AO-MBR) and three identical anaerobic side-stream reactor coupled with anoxic/oxic membrane bioreactors (ASSR-MBR) were constructed and operated in parallel to investigate the appropriate filling fraction of carriers packed in ASSR, influences on pollutants removal, sludge reduction, membrane fouling and microbial community of ASSR-MBR. Inserting ASSR achieved efficient COD removal and nitrification, and packing carriers in ASSR obtained the highest sludge reduction efficiency of 50.5 % at filling fraction of 25 %. Compared to AO-MBR, inserting ASSR without carriers induced the release of viscous components in extracellular polymeric substances (EPS) and the formation of calcium carbonate-related bacteria on membrane surface, and thus deteriorated membrane fouling. Packing carriers with 25 % filling fraction promoted the hydrolysis of soluble microbial products and EPS, whilst reduced the viscoelasticity of sludge flocs. Higher filling fraction of 50 % increased the shear forces to the biofilm and biomarkers related to membrane fouling, and thus showed little improvement to alleviate membrane fouling. MiSeq sequencing revealed that although it enriched in the bulk sludge of conventional ASSR-MBR and the coupled reactor with filling fraction of 50 %, the floc-forming, hydrolytic and fermentative bacteria were more inclined to attach on the membrane surface and alleviate fouling process.
Collapse
Affiliation(s)
- Yue Zheng
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Lingyan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yirong Chen
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaichong Wang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jianping Huang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
43
|
Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front Microbiol 2020; 11:662. [PMID: 32351487 PMCID: PMC7174725 DOI: 10.3389/fmicb.2020.00662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tilde Andersson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ewa Bukowska-Faniband
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. WATER 2020. [DOI: 10.3390/w12041094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding mixed-land-use practices and physicochemical influences on Escherichia (E.) coli concentrations is necessary to improve water quality management and human health. Weekly stream water samples and physicochemical data were collected from 22 stream gauging sites representing varying land use practices in a contemporary Appalachian watershed of the eastern USA. Over the period of one annual year, Escherichia (E.) coli colony forming units (CFU) per 100 mL were compared to physicochemical parameters and land use practices. Annual average E. coli concentration increased by approximately 112% from acid mine drainage (AMD) impacted headwaters to the lower reaches of the watershed (approximate averages of 177 CFU per 100 mL vs. 376 CFU per 100 mL, respectively). Significant Spearman’s correlations (p < 0.05) were identified from analyses of pH and E. coli concentration data representing 77% of sample sites; thus highlighting legacy effects of historic mining (AMD) on microbial water quality. A tipping point of 25–30% mixed development was identified as leading to significant (p < 0.05) negative correlations between chloride and E. coli concentrations. Study results advance understanding of land use and physicochemical impacts on fecal contamination in mixed-land-use watersheds, aiding in the implementation of effective water quality management practices and policies.
Collapse
|
45
|
Feng X, Guo W, Zheng H, Yang S, Du J, Wu Q, Luo H, Zhou X, Jin W, Ren N. Inhibition of biofouling in membrane bioreactor by metabolic uncoupler based on controlling microorganisms accumulation and quorum sensing signals secretion. CHEMOSPHERE 2020; 245:125363. [PMID: 31877457 DOI: 10.1016/j.chemosphere.2019.125363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Biofouling is a limiting bottleneck in the development of membrane bioreactor (MBR) since the birth of this technology. Recently, the biofouling control strategy based on interfering with the bacterial quorum sensing (QS) system is highly desirable for biofouling control in MBR. In this study, three lab-scale parallel MBR systems were operated over 100 days to investigate the inhibitory effect of a metabolic uncoupler (3,3',4',5-tetrachlorosalicylanilide, TCS) on biofouling and the potential mechanism for biofouling control. Compared to the control MBR, the fouling cycle duration of MBR 2 with 100 μg/L TCS extended over two times. The attached biomass on membrane in MBR 2 decreased over 50% at the end of each operating period, which indicated that the addition of TCS significantly mitigated microorganisms accumulation on membrane. The content of interspecies QS signal (autoinducer-2) and intraspecific QS signals (N-octanoyl-dl-homoserine lactone, C8-HSL) was reduced by the TCS, suggesting the secretion of QS signals in MBR were affected by uncoupler. Although the addition of TCS induced brief fluctuations of extracellular proteins and polysaccharides, microorganisms seemed to rapidly acclimatize to the presence of TCS and then the secretion of extracellular polymeric substances (EPS) was inhibited by 100 μg/L TCS. The continuous operation of MBR was not be affected by the low-concentration uncoupler via the analysis of substrate removal and sludge growth. This study systematically evaluated the effect and inhibitory efficiency of TCS on biofouling, biomass accumulation, QS signals, EPS and treatment performances, demonstrating the feasibility of metabolic uncoupler for biofouling control in MBR.
Collapse
Affiliation(s)
- Xiaochi Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wanqian Guo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Juanshan Du
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qinglian Wu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Haichao Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
46
|
Zhang B, Yue J, Guo Y, Liu T, Zhou M, Yang Y, Wu J, Zeng Y, Ning X. Effects of bioporous carriers on the performance and microbial community structure in side-stream anaerobic membrane bioreactors. Can J Microbiol 2020; 66:475-489. [PMID: 32223723 DOI: 10.1139/cjm-2019-0632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effects of a volcanic rock porous carrier (VRPC) on sludge reduction, pollutant removal, and microbial community structure in an anaerobic side-stream reactor (ASSR). Three lab-scale membrane bioreactors (MBRs), including an anoxic-oxic MBR, which served as the control (C-MBR), an ASSR-coupled MBR (A-MBR), and an A-MBR filled with VRPC (FA-MBR) were stably and simultaneously operated for 120 days. The effect of the three reactors on the removal of chemical oxygen demand (COD) was almost negligible (all greater than 95%), but the average removal efficiency of ammonium nitrogen, total nitrogen, and total phosphorus was significantly improved by the insertion of an ASSR, especially when the ASSR was filled with VRPC. Finally, A-MBR and FA-MBR achieved 16.2% and 26.4% sludge reduction rates, with observed sludge yields of 0.124 and 0.109 g mixed liquid suspended solids/g COD, respectively. Illumina MiSeq sequencing revealed that microbial diversity and richness were highest in the VRPC, indicating that a large number of microorganisms formed on the carrier surface in the form of a biofilm. Abundant denitrifying bacteria (Azospira, Comamonadaceae_unclassified, and Flavobacterium) were immobilized on the carrier biofilm, which contributed to increased nitrogen removal. The addition of a VRPC to the ASSR successfully immobilized abundant hydrolytic, fermentative, and slow-growing microorganisms, which all contributed to reductions in sludge yield.
Collapse
Affiliation(s)
- Bin Zhang
- School of Civil Engineering and Construction and Environment, Xihua University, Chengdu 610039, P.R. China.,School of Food and Biotechnology, Xihua University, Chengdu 610039, P.R. China
| | - Jiao Yue
- School of Civil Engineering and Construction and Environment, Xihua University, Chengdu 610039, P.R. China
| | - Yu Guo
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Taixin Liu
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Min Zhou
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Ying Yang
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Jiaxu Wu
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Yang Zeng
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Xinqiang Ning
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| |
Collapse
|
47
|
Chen Q, Wu W, Qi D, Ding Y, Zhao Z. Review on microaeration-based anaerobic digestion: State of the art, challenges, and prospectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136388. [PMID: 31923694 DOI: 10.1016/j.scitotenv.2019.136388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Microaeration (dosing small quantities of air or oxygen) is an effective approach to facilitate anaerobic digestion (AD) process and has gained increased attention in recent years. The underlying mechanisms of the facilitation effect of microaeration on AD process were reviewed in terms of accelerating hydrolysis, scavenging hydrogen sulfide, and affecting microbial diversity. Process parameters and control strategies were summarized to reveal considerable factors in implementing microaeration-based AD process. In addition, current applications, including lab-, pilot- and full-scale level cases, were summarized to provide guidance for further improvement in large-scale applications. The challenges and future perspectives were also highlighted to promote the development of AD process associated with microaeration.
Collapse
Affiliation(s)
- Qing Chen
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Wanqing Wu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China.
| | - Dacheng Qi
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Yihong Ding
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Zihao Zhao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| |
Collapse
|
48
|
Sun LP, Lin YJ, Shi CY, Wang SQ, Luo WX, Wang M. Effects of interchange ratio on sludge reduction and microbial community structures in an anaerobic/anoxic/oxic process with combined anaerobic side-stream reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1250-1263. [PMID: 32597411 DOI: 10.2166/wst.2020.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxic-settling-anaerobic (OSA) process is effective in minimizing sludge production, by inserting an anaerobic side-stream reactor (ASSR) in the recycling bypass. Interchange ratio (IR), the quantity ratio of sludge entering the ASSR to the sludge in the main stream reactors, is one of the most important parameters for OSA process. In the present study, a laboratory-scale anaerobic/anoxic/oxic (A2/O) process combined with an ASSR (A2/O-ASSR) was operated for 366 days in parallel with a conventional A2/O process to investigate the effects of IR on sludge reduction. IR was assigned values of 5%, 8%, 10%, and 15%, and the A2/O-ASSR process achieved 14.0%, 16.0%, 24.1%, and 13.7% of sludge reduction, respectively. At the optimum IR of 10%, high through-put sequencing analysis showed that the microbes responsible for pollutant removal and ubiquitous in wastewater treatment remained predominant in the two systems, and slow-growing microbes related to hydrolysis, nitrogen and phosphorus removal increased in the A2/O-ASSR process, which probably played a key role in sludge reduction. 40.6-58.6% of sludge reduction was caused by sludge decay in the ASSR. The tiny amount of extracellular polymeric substance released in the A2/O-ASSR process was subthreshold to cause remarkable sludge reduction.
Collapse
Affiliation(s)
- L P Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China E-mail: ; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Y J Lin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China E-mail:
| | - C Y Shi
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China E-mail:
| | - S Q Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China E-mail: ; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - W X Luo
- Foshan Water Group, Guangdong, Foshan, 528000, China
| | - M Wang
- Guangzhou Yuekang Environmental Engineering Co., Ltd, Guangdong, Guangzhou 510275, China
| |
Collapse
|
49
|
Fang F, Wang SN, Li KY, Dong JY, Xu RZ, Zhang LL, Xie WM, Cao JS. Formation of microbial products by activated sludge in the presence of a metabolic uncoupler o-chlorophenol in long-term operated sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121311. [PMID: 31585278 DOI: 10.1016/j.jhazmat.2019.121311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Metabolic uncouplers are widely used for reducing excess sludge in biological wastewater treatment systems. However, the formation of microbial products, such as extracellular polymeric substances, polyhydroxyalkanoate and soluble microbial products by activated sludge in the presence of metabolic uncouplers remains unrevealed. In this study, the impacts of a metabolic uncoupler o-chlorophenol (oCP) on the reduction of activated sludge yield and formation of microbial products in laboratory-scale sequencing batch reactors (SBRs) were evaluated for a long-term operation. The results show the average reduction of sludge yield in the four reactors was 17.40%, 25.80%, 33.02% and 39.50%, respectively, when dosing 5, 10, 15, and 20 mg/L oCP. The oCP addition slightly reduced the pollutant removal efficiency and decreased the formation of soluble microbial products in the SBRs, but stimulated the productions of extracellular polymeric substances and polyhydroxyalkanoate in activated sludge. Furthermore, the significant reduction of electronic transport system activity occurred after the oCP addition. Microbial community analysis of the activated sludge indicates dosing oCP resulted in a decrease of sludge richness and diversity in the SBRs. Hopefully, this study would provide useful information for reducing sludge yield in biological wastewater treatment systems and behaviors of activated sludge in the presence of uncouplers.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ke-Yan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jin-Yun Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lu-Lu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wen-Ming Xie
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
50
|
Guo JS, Fang F, Yan P, Chen YP. Sludge reduction based on microbial metabolism for sustainable wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 297:122506. [PMID: 31812600 DOI: 10.1016/j.biortech.2019.122506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Sludge reduction via microbial metabolism does not require extra energy and resource inputs and thus merits attention as an alternative approach for sustainable wastewater treatment. This review presents a summary and analysis of the existing literatures on sludge reduction based on microbial metabolism, as well as interprets these sludge reduction mechanisms using bacterial thermodynamics and stoichiometry. Future efforts should be directed toward using advanced analytical techniques to further reveal sludge reduction mechanisms. The feasibility of coupling sludge reduction and nutrient removal by microorganism metabolism needs to be further evaluated to minimize the effect of sludge reduction on nutrient removal. A comprehensive life cycle assessment of sludge reduction strategies is recommended to effectively confirm their sustainability. Full-scale research is needed to verify the results obtained from bench- and pilot-scale experiments. This review presents the future opportunities and challenges for sludge reduction based on microbial metabolism in the excess sludge disposal.
Collapse
Affiliation(s)
- Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|