1
|
Wang J, Cheng Z, Su Y, Wang J, Chen D, Chen J, Wu X, Chen A, Gu Z. Metagenomics and metatranscriptomics insights into microbial enhancement of H 2S removal and CO 2 assimilation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123714. [PMID: 39675328 DOI: 10.1016/j.jenvman.2024.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
This study focuses on the coupled process of bio-enhanced absorption and biodesulfurization for the toxic gas H2S and the greenhouse gas CO2. The results show that on the basis of stabilized absorption of H2S and CO2 by alkaline solution (Stage I), the addition of air-lift bioreactor process solution in the absorption column enhanced their absorption (Stage II). Specifically, at constant inlet concentrations of H₂S and CO₂ of 3% (30,000 ppmv) and 30% (300,000 ppmv), respectively, the outlet gases were primarily H₂S, CO₂, and N₂. And the outlet H2S and CO2 concentrations decreased from 10,038 ± 1166 ppmv and 49,897 ± 2545 ppmv in Stage I to 940 ± 163 ppmv and 21,000 ± 2165 ppmv in Stage II. S0-producing performance (348 ± 20-503 ± 23 mg S/L) and biomass concentration (467 ± 13-677 ± 55 mg/L) in the subsequent bioreactor also increased in response to the enhanced absorption of H2S and CO2. Biologically enhanced H2S and CO2 absorption differs from physicochemical factors in that it depends on several physiological parameters such as microbial community composition and gene expression levels. In this study, the sulfur autotrophic denitrifying bacteria Thioalkalivibrio and Arenimonas had high abundance and activity (abundance: 69.5% and 21.1%, expression: 82.4% and 13.9%), and they were the main contributors to the bio-enhanced absorption of H2S and CO2 in this system. In addition, the main factor for enhanced H2S absorption could be the high expression of sulfide:quinone oxidoreductase (SQR, encoding gene sqr) (45 ± 9 to 821 ± 102 transcripts per million). Enhanced CO2 absorption could have been achieved by the oxidation of more H2S generating more energy to increase the carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, encoding genes rbcLS). Enhanced H2S absorption enhances CO2 absorption and facilitates microbial growth, which in turn benefits the metabolism of H2S, creating a complementary biologically enhanced absorption. This study provides a novel strategy, demonstrating the potential of autotrophic sulfide-oxidizing microorganisms in the simultaneous removal of H₂S and assimilation of CO₂, and offers a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Junjie Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China.
| | - Yunfei Su
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou, 310023, China
| | - Xiaoming Wu
- Ruze Environment Engineerng Ltd., Nantong, Jiangsu, 226001, China
| | - Aobo Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Zhenyu Gu
- Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| |
Collapse
|
2
|
Rouhollahi AA, Giyahchi M, Dastgheib SMM, Moghimi H. Assessing the efficiency and microbial diversity of H 2S-removing biotrickling filters at various pH conditions. Microb Cell Fact 2024; 23:157. [PMID: 38807121 PMCID: PMC11134876 DOI: 10.1186/s12934-024-02427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
This study aimed to investigate the operation of three parallel biotrickling filters (BTFs) in removing H2S at different pH conditions (haloalkaliphilic, neutrophilic, and acidophilic) and their associated microbial population in the biodesulfurization process. BTF columns were inoculated with enriched inoculum and experiments were performed by gradually reducing Empty Bed Retention Time (EBRT) and increasing inlet concentration in which the maximum removal efficiency and maximum elimination capacity in EBRT 60 s reached their maximum level in haloalkaline condition (91% and 179.5 g S-H2S m-3 h-1). For visualizing the attached microbial biofilms on pall rings, Scanning Electron Microscopy (SEM) was used and microbial community structure analysis by NGS showed that the most abundant phyla in haBTF, nBTF, and aBTF belong to Gammaproteobacteria, Betaproteobacteria, and Acidithiobacillia, respectively. Shannon and Simpson indexes evaluation showed a lower diversity of bacteria in the aBTF reactor than that of nBTF and haBTF and beta analysis indicated a different composition of bacteria in haBTF compared to the other two filters. These results indicated that the proper performance of BTF under haloalkaliphilic conditions is the most effective way for H2S removal from air pollutants of different industries.
Collapse
Affiliation(s)
- Abbas Abbas Rouhollahi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Jia T, Zhang L, Zhao Q, Peng Y. The effect of biofilm growth on the sulfur oxidation pathway and the synergy of microorganisms in desulfurization reactors under different pH conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128638. [PMID: 35306408 DOI: 10.1016/j.jhazmat.2022.128638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Biofilm growth affects the oxygen transfer in biofilm and thus the oxidation pathway of sulfur and the synergy of microorganisms. In this study, the effect of biofilm growth on the oxidation pathway of H2S and the synergy of microorganisms in desulfurization reactors under different pH conditions was first discussed to enhance the understanding of desulfurization process. A biotrickling filter (BTF) was operated for 168 days under acidic condition (pH<4.7) and 32 days under alkaline condition (7.0 <pH<10.2). In acidic period, the average growth mass (AGM) of biofilm was 0.04 g/L-BTF/d, and most of S-H2S was converted to S-SO42- (>89.0%). In alkaline period, the AGM raised to 0.97 g/L-BTF/d, and 77.0% of S-H2S was transferred to elemental sulfur (S0) and polysulfanes (R-Sx-R) accumulated in biofilm. The increase of biofilm and sulfur-oxidizing bacteria activity limited the oxygen transfer in alkaline biofilm, leading to the accumulation of S0 and the emergence of an obligate anaerobe- Acetoanaerobium (8.1%). The formation of R-Sx-R may be due to the reaction of S0 with thiols produced by a thiol-producing bacterium- Pseudomonas (6.7%). The uneven distribution of oxygen in biofilm caused by biofilm growth complicated the transfer pathway of sulfur and the synergy of microorganisms in desulfurization system.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Hydrogen Sulfide Production with a Microbial Consortium Isolated from Marine Sediments Offshore. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Hydrogen, electric energy production, and metal toxic bioremediation are some of the biotechnological applications of sulfate-reducing organisms, which potentially depend on the sulfide produced. In this study, offshore of Yucatan, the capacity to produce hydrogen sulfide using microbial consortia from marine sediment (SC469, PD102, SD636) in batch reactors was evaluated. Kinetic tests were characterized by lactate oxidation to acetate, propionate, CO2 and methane. The inoculum SC469, located in open-ocean, differed strongly in microbial diversity and showed better performance in substrate utilization with the highest hydrogen sulfide production (246 mmolg−1 VSS) at a specific hydrogen sulfide rate of 113 mmol g−1 VSS d−1 with a 0.79 molar ratio of sulfate/lactate. Sulfate-reducing microbial consortia enriched in the laboratory from marine sediments collected offshore in Yucatan and with a moderate eutrophication index, differed strongly in microbial diversity with loss of microorganisms with greater capacity for degradation of organic macromolecules. The sulfate-reducing microorganisms were characterized using Illumina MiSeq technology and were mainly Desulfomicrobium, Clostridium and Desulfobacter.
Collapse
|
5
|
Kiragosyan K, Picard M, Timmers PHA, Sorokin DY, Klok JBM, Roman P, Janssen AJH. Effect of methanethiol on process performance, selectivity and diversity of sulfur-oxidizing bacteria in a dual bioreactor gas biodesulfurization system. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123002. [PMID: 32506049 DOI: 10.1016/j.jhazmat.2020.123002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
This study provides important new insights on how to achieve high sulfur selectivities and stable gas biodesulfurization process operation in the presence of both methanethiol and H2S in the feed gas. On the basis of previous research, we hypothesized that a dual bioreactor lineup (with an added anaerobic bioreactor) would favor sulfur-oxidizing bacteria (SOB) that yield a higher sulfur selectivity. Therefore, the focus of the present study was to enrich thiol-resistant SOB that can withstand methanethiol, the most prevalent and toxic thiol in sulfur-containing industrial off gases. In addition, the effect of process conditions on the SOB population dynamics was investigated. The results confirmed that thiol-resistant SOB became dominant with a concomitant increase of the sulfur selectivity from 75 mol% to 90 mol% at a loading rate of 2 mM S methanethiol day-1. The abundant SOB in the inoculum - Thioalkalivibrio sulfidiphilus - was first outcompeted by Alkalilimnicola ehrlichii after which Thioalkalibacter halophilus eventually became the most abundant species. Furthermore, we found that the actual electron donor in our lab-scale biodesulfurization system was polysulfide, and not the primarily supplied sulfide.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Peer H A Timmers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD, Utrecht, the Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Shell, Oostduinlaan 2, 2596 JM, the Hague, the Netherlands
| |
Collapse
|
6
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|
7
|
de Rink R, Klok JBM, van Heeringen GJ, Keesman KJ, Janssen AJH, Ter Heijne A, Buisman CJN. Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121104. [PMID: 31586887 DOI: 10.1016/j.jhazmat.2019.121104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two steps: i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ± 265 ppmv at 25.4 °C to 69 ± 25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ± 126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.
Collapse
Affiliation(s)
- Rieks de Rink
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands
| | - Johannes B M Klok
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands
| | | | - Karel J Keesman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands; Mathematical and Statistical methods, Wageningen University, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands.
| | - Cees J N Buisman
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands
| |
Collapse
|
8
|
Kiragosyan K, Klok JB, Keesman KJ, Roman P, Janssen AJ. Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions. WATER RESEARCH X 2019; 4:100035. [PMID: 31334497 PMCID: PMC6614595 DOI: 10.1016/j.wroa.2019.100035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 05/14/2023]
Abstract
Hydrogen sulfide is a toxic and corrosive gas that must be removed from gaseous hydrocarbon streams prior to combustion. This paper describes a gas biodesulfurization process where sulfur-oxidizing bacteria (SOB) facilitate sulfide conversion to both sulfur and sulfate. In order to optimize the formation of sulfur, it is crucial to understand the relations between the SOB microbial composition, kinetics of biological and abiotic sulfide oxidation and the effects on the biodesulfurization process efficiency. Hence, a physiologically based kinetic model was developed for four different inocula. The resulting model can be used as a tool to evaluate biodesulfurization process performance. The model relies on a ratio of two key enzymes involved in the sulfide oxidation process, i.e., flavocytochrome c and sulfide-quinone oxidoreductase (FCC and SQR). The model was calibrated by measuring biological sulfide oxidation rates for different inocula obtained from four full-scale biodesulfurization installations fed with gases from various industries. Experimentally obtained biological sulfide oxidation rates showed dissimilarities between the tested biomasses which could be explained by assuming distinctions in the key-enzyme ratios. Hence, we introduce a new model parameter α to whereby α describes the ratio between the relative expression levels of FCC and SQR enzymes. Our experiments show that sulfur production is the highest at low α values.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Corresponding author. Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands.
| | - Johannes B.M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Paqell B.V., Reactorweg 301, 3542, AD, Utrecht, the Netherlands
| | - Karel J. Keesman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Biobased Chemistry & Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Albert J.H. Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Shell, Oostduinlaan 2, 2596, M the Hague, the Netherlands
| |
Collapse
|
9
|
Xun S, Yu Z, He M, Wei Y, Li X, Zhang M, Zhu W, Li H. Supported phosphotungstic-based ionic liquid as an heterogeneous catalyst used in the extractive coupled catalytic oxidative desulfurization in diesel. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03833-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ni G, Harnawan P, Seidel L, Ter Heijne A, Sleutels T, Buisman CJN, Dopson M. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:197-204. [PMID: 30308358 DOI: 10.1016/j.jhazmat.2018.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Several industrial processes produce toxic sulfide containing streams that are often scrubbed using caustic solutions. An alternative, cost effective sulfide treatment method is bioelectrochemical sulfide removal. For the first time, a haloalkaliphilic sulfide-oxidizing microbial consortium was introduced to the anodic chamber of a microbial electrolysis cell operated at alkaline pH and with 1.0 M sodium ions. Under anode potential control, the highest sulfide removal rate was 2.16 mM/day and chemical analysis supported that the electrical current generation was from the sulfide oxidation. Biotic operation produced a maximum current density of 3625 mA/m2 compared to 210 mA/m2 while under abiotic operation. Furthermore, biotic electrical production was maintained for a longer period than for abiotic operation, potentially due to the passivation of the electrode by elemental sulfur during abiotic operation. The use of microorganisms reduced the energy input in this study compared to published electrochemical sulfide removal technologies. Sulfide-oxidizing populations dominated both the planktonic and electrode-attached communities with 16S rRNA gene sequences aligning within the genera Thioalkalivibrio, Thioalkalimicrobium, and Desulfurivibrio. The dominance of the Desulfurivibrio-like population on the anode surface offered evidence for the first haloalkaliphilic bacterium able to couple electrons from sulfide oxidation to extracellular electron transfer to the anode.
Collapse
Affiliation(s)
- Gaofeng Ni
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands; Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Pebrianto Harnawan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands
| | - Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Annemiek Ter Heijne
- Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands
| | - Cees J N Buisman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands; Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
11
|
Sudmalis D, Da Silva P, Temmink H, Bijmans MM, Pereira MA. Biological treatment of produced water coupled with recovery of neutral lipids. WATER RESEARCH 2018; 147:33-42. [PMID: 30296607 DOI: 10.1016/j.watres.2018.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Produced water (PW) is the largest waste stream generated by oil and gas industry. It is commonly treated by physical-chemical processes due to high salt content and poor biodegradability of water insoluble compounds, such as n-alkanes. N-alkanes can represent a major fraction of organic contaminants within PW. In this study the possibility of simultaneous n - alkane biodegradation and production of neutral lipids in a concentrated PW stream with A. borkumenis SK2 as the sole reactor inoculum was investigated. N-alkane removal efficiency up to 99.6%, with influent alkane COD of 7.4 g/L, was achieved in a continuously operated reactor system. Gas chromatography results also showed that the majority of other non-polar compounds present in the PW were biodegraded. Biodegradation of n-alkanes was accompanied by simultaneous production of neutral lipids, mostly wax ester (WE)-alike compounds. We demonstrate, that under nutrient limited conditions and 108.9 ± 3.3 mg/L residual n-alkane concentration the accumulation of extracellular WE-alike compounds can be up to 12 times higher compared to intracellular, reaching 3.08 grams per litre of reactor volume (g/Lreactor) extracellularly and 0.28 g/Lreactor intracellularly. With residual n-alkane concentration of 311.5 ± 34.2 mg/L accumulation of extracellular and intracellular WE-alike compounds can reach up to 6.15 and 0.91 g/Lreactor, respectively. To the best of our knowledge simultaneous PW treatment coupled with production of neutral lipids has never been demonstrated before.
Collapse
Affiliation(s)
- D Sudmalis
- Sub-department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - P Da Silva
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - H Temmink
- Sub-department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - M M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - M A Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
12
|
Kalantari H, Nosrati M, Shojaosadati SA, Shavandi M. Investigation of transient forms of sulfur during biological treatment of spent caustic. ENVIRONMENTAL TECHNOLOGY 2018; 39:1597-1606. [PMID: 28554258 DOI: 10.1080/09593330.2017.1334707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the production of various transient forms of sulfur during biological oxidation of sulfidic spent caustics under haloalkaline conditions in a stirred tank bioreactor is investigated. Also, the effects of abiotic aeration (chemical oxidation), dissolved oxygen (DO) concentration and sodium concentration on forms of sulfur during biological treatment are demonstrated. Thioalkalivibrio versutus strain was used for sulfide oxidation in spent caustic (SC). The aeration had an important effect on sulfide oxidation and its final products. At DO concentrations above 2 mg l-1, majority of sulfide was oxidized to sulfate. Maximum sulfide removal efficiency (%R) and yield of sulfate production [Formula: see text] was obtained in Na+ concentration ranging from 0.6 to 2 M. Abiotic aeration, which is the most important factor of production of thiosulfate, resulted in the formation of an undesired product-polysulfide. However, abiotic aeration can be used as a pretreatment to biological treatment. In the bioreactor the removal efficiency was obtained as 82.7% and various forms of sulfur such as polysulfide, biosulfur, thiosulfate and sulfate was observed during biological treatment of SC.
Collapse
Affiliation(s)
- Hamed Kalantari
- a Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Mohsen Nosrati
- a Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Seyed Abbas Shojaosadati
- a Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Shavandi
- b Environment and Biotechnology Group , Research Institute of Petroleum Industry , Tehran , Iran
| |
Collapse
|
13
|
Roman P, Klok JBM, Sousa JAB, Broman E, Dopson M, Van Zessen E, Bijmans MFM, Sorokin DY, Janssen AJH. Selection and Application of Sulfide Oxidizing Microorganisms Able to Withstand Thiols in Gas Biodesulfurization Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12808-12815. [PMID: 27934286 DOI: 10.1021/acs.est.6b04222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.
Collapse
Affiliation(s)
- Pawel Roman
- Sub-Department of Environmental Technology, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Paqell, Asterweg 109, 1031 HM Amsterdam, The Netherlands
| | - João A B Sousa
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Laboratory of Microbiology, Wageningen University , Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University , Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University , Kalmar, Sweden
| | - Erik Van Zessen
- Paques B.V., Tjalke de Boerstrjitte 24, 8561 EL Balk, The Netherlands
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences , Prospect 60-let Oktyabrya 7/2, 117811 Moscow, Russia
- Department of Biotechnology, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Albert J H Janssen
- Sub-Department of Environmental Technology, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Shell Technology Centre Bangalore, RMZ Centennial Campus B, Kundalahalli Main Road, Bengaluru 560 048 India
| |
Collapse
|