1
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
2
|
Pan T, Wang KT, He JY, Zhang Y, Ni SG. Black odorous water concentrating by forward osmosis: rejection performance of characteristic pollutants based on cation exchange. ENVIRONMENTAL TECHNOLOGY 2023; 44:4210-4218. [PMID: 35658802 DOI: 10.1080/09593330.2022.2086824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate pollutant concentration and nitrogen interception characteristics of a forward osmosis (FO) process for concentrating black odorous water. The membrane cell was operated in active layer facing feed solution (AL-FS) mode with aquaporin (AQP) as the membrane material and NaCl solution as the draw solution (DS). The organic pollutants (COD), TP, NH+4-N, NO-3-N, TN, Fe and Mn in black odorous water were concentrated non-intermittently for 24 h, and their interception characteristics were investigated. The results showed that the average interception rates of COD, TP, NO- 3-N, TN, Fe and Mn were 97.2%, 98.0%, 58.7%, 54.3%, 61.8% and 60.0%, respectively, while the average interception rate of NH+4-N was only 1.27%-3.47%. To explore the characteristics of nitrogen interception, a comparison was conducted between AQP membrane and thin film composite (TFC) membrane. Because the surface electronegativity of AQP membrane was stronger than that of TFC, the effect of cation exchange on ammonia nitrogen interception was more serious with AQP membrane. With NaCl solution as DS, the reverse osmosis flux of Na+ was (0.53 ± 0.02 mol·m-2·h-1), which was significantly higher than that of Cl- (0.29 ± 0.03 mol·m-2·h-1) (P < 0.05). The interception effect of AQP membrane on TN was related to the proportion of NH+4-N in TN. The pretreatment of black odorous water by aeration could transform part of NH+4-N into NO-3-N, and reduce the negative effect of cation exchange effect on nitrogen interception. The TN interception rate increased from 54.3% to 66.1%.
Collapse
Affiliation(s)
- Ting Pan
- College of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Kai-Tong Wang
- College of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jia-Ying He
- College of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yong Zhang
- College of Environment, Nanjing Normal University, Nanjing, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, People's Republic of China
- Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, People's Republic of China
| | - Shou-Gao Ni
- China Ship Scientific Research Centre, Wuxi, People's Republic of China
| |
Collapse
|
3
|
Li MX, Li W, Xiong YS, Lu HQ, Li H, Li K. Preparation of quaternary ammonium-functionalized metal-organic framework/chitosan composite aerogel with outstanding scavenging of melanoidin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Bardhan A, Subbiah S, Mohanty K, Ibrar I, Altaee A. Feasibility of Poly (Vinyl Alcohol)/Poly (Diallyldimethylammonium Chloride) Polymeric Network Hydrogel as Draw Solute for Forward Osmosis Process. MEMBRANES 2022; 12:1097. [PMID: 36363652 PMCID: PMC9692437 DOI: 10.3390/membranes12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Forward osmosis (FO) has been identified as an emerging technology for the concentration and crystallization of aqueous solutions at low temperatures. However, the application of the FO process has been limited due to the unavailability of a suitable draw solute. An ideal draw solute should be able to generate high osmotic pressure and must be easily regenerated with less reverse solute flux (RSF). Recently, hydrogels have attracted attention as a draw solution due to their high capacity to absorb water and low RSF. This study explores a poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) (PVA-polyDADMAC) polymeric network hydrogel as a draw solute in forward osmosis. A low-pressure reverse osmosis (RO) membrane was used in the FO process to study the performance of the hydrogel prepared in this study as a draw solution. The robust and straightforward gel synthesis method provides an extensive-scale application. The results indicate that incorporating cationic polyelectrolyte poly (diallyldimethylammonium chloride) into the polymeric network increases swelling capacity and osmotic pressure, thereby resulting in an average water flux of the PVA-polyDADMAC hydrogel (0.97 L m−2 h−1) that was 7.47 times higher than the PVA hydrogel during a 6 h FO process against a 5000 mg L−1 NaCl solution (as a feed solution). The effect of polymer and cross-linker composition on swelling capacity was studied to optimize the synthesized hydrogel composition. At 50 °C, the hydrogel releases nearly >70% of the water absorbed during the FO process at room temperatures, and water flux can be recovered by up to 86.6% of the initial flux after 12 hydrogel (draw solute) regenerations. Furthermore, this study suggests that incorporating cationic polyelectrolytes into the polymeric network enhances FO performances and lowers the actual energy requirements for (draw solute) regeneration. This study represents a significant step toward the commercial implementation of a hydrogel-driven FO system for the concentration of liquid-food extract.
Collapse
Affiliation(s)
- Ananya Bardhan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Peters CD, Li D, Mo Z, Hankins NP, She Q. Exploring the Limitations of Osmotically Assisted Reverse Osmosis: Membrane Fouling and the Limiting Flux. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6678-6688. [PMID: 35475365 DOI: 10.1021/acs.est.2c00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osmotically assisted reverse osmosis (OARO) has shown great potential for low-cost and energy-efficient brine management. However, its performance can be significantly limited by membrane fouling. Here, we performed for the first time a comprehensive study on OARO membrane fouling, explored the associated fouling mechanisms, and evaluated fouling reversibility via simple physical cleaning strategies. First, internal membrane fouling at the draw (permeate) side was shown to be insignificant. Flux behavior in short-term operation was correlated to both the evolution of fouling and the change of internal concentration polarization. In long-term operation, membrane fouling constrained the OARO water flux to a singular, common upper limit, in terms of limiting flux, which was demonstrated to be independent of operating pressures and membrane properties. Generally, once the limiting flux was exceeded, the OARO process performance could not be improved by higher-pressure operation or by utilizing more permeable and selective membranes. Instead, different cyclic cleaning strategies were shown to be more promising alternatives for improving performance. While both surface flushing and osmotic backwashing (OB) were found to be highly effective when using pure water, a full flux recovery could not be achieved when a nonpure solution was used during OB due to severe internal clogging during OB. All in all, the presented findings provided significant implications for OARO operation and fouling control.
Collapse
Affiliation(s)
- Christian D Peters
- Department of Engineering Science, The University of Oxford, Parks Road, OX3 1PJ Oxford, U.K
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Dan Li
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zijing Mo
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nicholas P Hankins
- Department of Engineering Science, The University of Oxford, Parks Road, OX3 1PJ Oxford, U.K
| | - Qianhong She
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Forward Osmosis (FO) Membrane Fouling Mitigation during the Concentration of Cows’ Urine. MEMBRANES 2022; 12:membranes12020234. [PMID: 35207155 PMCID: PMC8877373 DOI: 10.3390/membranes12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
FO membrane fouling mitigation during the concentration of cows’ urine was investigated. In particular, the effects on the permeability recovery of cleaning methods such as membrane washing with deionized (DI) water, osmotic backwash, and chemical cleaning were studied. The characterization of foulants that accumulated on the membrane surface was found to be rich in sugars and proteins. The foulants were effectively removed by de-ionized water circulation (washing) and osmotic backwash. While osmotic back was more effective, it did not fully recover the permeability of the membrane. The foulants absorbed in the membrane pores were found to be mainly composed of sugars. Soaking the membrane in a solution of NaClO enabled the removal of foulants absorbed inside the membrane. It was revealed that soaking in 1% NaClO solution for 30 min achieved the best results (83% permeability recovery), while soaking for a longer time (10 h) using 0.2% NaClO resulted in counterproductive results.
Collapse
|
7
|
Optimization of Aquaporin Loading for Performance Enhancement of Aquaporin-Based Biomimetic Thin-Film Composite Membranes. MEMBRANES 2021; 12:membranes12010032. [PMID: 35054558 PMCID: PMC8777877 DOI: 10.3390/membranes12010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The aquaporin-based biomimetic thin-film composite membrane (ABM-TFC) has demonstrated superior separation performance and achieved successful commercialization. The larger-scale production of the ABM membrane requires an appropriate balance between the performance and manufacturing cost. This study has systematically investigated the effects of proteoliposome concentration, protein-to-lipid ratio, as well as the additive on the separation performance of ABM for the purpose of finding the optimal preparation conditions for the ABM from the perspective of industrial production. Although increasing the proteoliposome concentration or protein-to-lipid ratio within a certain range could significantly enhance the water permeability of ABMs by increasing the loading of aquaporins in the selective layer, the enhancement effect was marginal or even compromised beyond an optimal point. Alternatively, adding cholesterol in the proteoliposome could further enhance the water flux of the ABM membrane, with minor effects on the salt rejection. The optimized ABM not only achieved a nearly doubled water flux with unchanged salt rejection compared to the control, but also demonstrated satisfactory filtration stability within a wide range of operation temperatures. This study provides a practical strategy for the optimization of ABM-TFC membranes to fit within the scheme of industrial-scale production.
Collapse
|
8
|
Study of the catalytic activity of multilayer graphene (MLG), molybdenum oxide (MoO2), and manganese ferrite (MnFe2O4) on the melanoidin removal by ozonation process. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Verma R, Kundu LM, Pandey LM. Enhanced melanoidin removal by amine-modified Phyllanthus emblica leaf powder. BIORESOURCE TECHNOLOGY 2021; 339:125572. [PMID: 34298248 DOI: 10.1016/j.biortech.2021.125572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Melanoidins are classified as hazardous colouring and polluting biopolymers, which are generated in very large amounts in molasses-based distillery effluent. In this study, melanoidin was removed through adsorption using amine surface-modified Phyllanthus emblica leaf powder (PELP) as a low-cost natural adsorbent. The amine-modified adsorbents were prepared by forming self-assembled monolayers (SAMs). The pzc of melanoidin and anime-modified PELP were found to be 6.9 and 3.8, respectively. RSM-CCD was used to optimize the environmental conditions considering adsorbent doses (0.2-2 % w/v), pH (3-11) and temperature (25-55 °C). A complete decolourization of melanoidin (98.50 ± 1 %) was observed at the optimized conditions (44.0 °C, pH = 5.93 and dose = 1.34 % w/v) along with 93.4 ± 0.2 % of COD reduction. The surface modification enhanced the maximum adsorption capacity to 616.2 mg g-1 i.e. 2.5 folds. The modified adsorbent also resulted in colour removal and COD reduction as 91 ± 3 and 84 ± 2 %, respectively from a real spentwash sample.
Collapse
Affiliation(s)
- Rahul Verma
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lal Mohan Kundu
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Lin X, He Y, Zhang Y, Yu W, Lian T. Sulfonated covalent organic frameworks (COFs) incorporated cellulose triacetate/cellulose acetate (CTA/CA)-based mixed matrix membranes for forward osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ratna S, Rastogi S, Kumar R. Current trends for distillery wastewater management and its emerging applications for sustainable environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112544. [PMID: 33862317 DOI: 10.1016/j.jenvman.2021.112544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Ethanol distillation generates a huge volume of unwanted chemical liquid known as distillery wastewater. Distillery wastewater is acidic, dark brown having high biological oxygen demand, chemical oxygen demand, contains various salt contents, and heavy metals. Inadequate and indiscriminate disposal of distillery wastewater deteriorates the quality of the soil, water, and ultimately groundwater. Its direct exposure via food web shows toxic, carcinogenic, and mutagenic effects on aquatic-terrestrial organisms including humans. So, there is an urgent need for its proper management. For this purpose, a group of researchers applied distillery wastewater for fertigation while others focused on its physico-chemical, biological treatment approaches. But until now no cutting-edge technology has been proposed for its effective management. So, it becomes imperative to comprehend its toxicity, treatment methods, and implication for environmental sustainability. This paper reviews the last decade's research data on advanced physico-chemical, biological, and combined (physico-chemical and biological) methods to treat distillery wastewater and its reuse aspects. Finally, it revealed that the combined methods along with the production of value-added products are one of the best options for distillery wastewater management.
Collapse
Affiliation(s)
- Sheel Ratna
- Rhizosphere Biology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raibareli Road, Lucknow, 226025, India.
| | - Swati Rastogi
- Rhizosphere Biology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raibareli Road, Lucknow, 226025, India
| | - Rajesh Kumar
- Rhizosphere Biology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raibareli Road, Lucknow, 226025, India
| |
Collapse
|
13
|
Trishitman D, Negi PS, Rastogi NK. Concentration of beetroot juice colorant (betalains) by forward osmosis and its comparison with thermal processing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Wu X, Lau CH, Pramanik BK, Zhang J, Xie Z. State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment. MEMBRANES 2021; 11:membranes11050305. [PMID: 33919353 PMCID: PMC8143320 DOI: 10.3390/membranes11050305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The application of membrane technologies for wastewater treatment to recover water and nutrients from different types of wastewater can be an effective strategy to mitigate the water shortage and provide resource recovery for sustainable development of industrialisation and urbanisation. Forward osmosis (FO), driven by the osmotic pressure difference between solutions divided by a semi-permeable membrane, has been recognised as a potential energy-efficient filtration process with a low tendency for fouling and a strong ability to filtrate highly polluted wastewater. The application of FO for wastewater treatment has received significant attention in research and attracted technological effort in recent years. In this review, we review the state-of-the-art application of FO technology for sewage concentration and wastewater treatment both as an independent treatment process and in combination with other treatment processes. We also provide an outlook of the future prospects and recommendations for the improvement of membrane performance, fouling control and system optimisation from the perspectives of membrane materials, operating condition optimisation, draw solution selection, and multiple technologies combination.
Collapse
Affiliation(s)
- Xing Wu
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK;
| | | | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
- Correspondence:
| |
Collapse
|
15
|
Li R, Braekevelt S, De Carfort JLN, Hussain S, Bollmann UE, Bester K. Laboratory and pilot evaluation of aquaporin-based forward osmosis membranes for rejection of micropollutants. WATER RESEARCH 2021; 194:116924. [PMID: 33618109 DOI: 10.1016/j.watres.2021.116924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Aquaporin-based forward osmosis (AQP FO) membranes were applied both in laboratory- and pilot-scale for removing micropollutants from water. The effect of operating parameters (feed flow, draw flow, and transmembrane pressure) on the i) rejection of micropollutants, ii) water flux, iii) reverse salt flux, and iv) water recovery of the AQP FO membrane modules was studied. Among the 21 micropollutants spiked, only four compounds, atenolol, propranolol, metoprolol, and citalopram, permeated through the AQP FO membranes to an extent that they could be quantified in the draw solutions of both the laboratory and pilot systems. The rejection rates, based on the full mass balance calculations, were between 96.1% and 99.7%, and all the other 17 compounds showed rejection exceeding 90% on both systems. The pilot AQP FO system was further employed for six days to treat effluent from a membrane bioreactor (MBR) treating municipal wastewater. 35 micropollutants were investigated. 27 of these were identified and quantified in the MBR effluent. Minute fractions of gabapentin, benzotriazole, and metoprolol were detected passing through the AQP FO membranes into the draw side with a constant rejection of around 99.2%, 95.4%, and 99.9%. Almost all other micropollutants' minimum rejection rates exceeded 80%.
Collapse
Affiliation(s)
- Rui Li
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | | | - Johan Le Nepvou De Carfort
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Shazad Hussain
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
16
|
Akhtar A, Singh M, Subbiah S, Mohanty K. Sugarcane juice concentration using a novel aquaporin hollow fiber forward osmosis membrane. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Bao X, She Q, Long W, Wu Q. Ammonium ultra-selective membranes for wastewater treatment and nutrient enrichment: Interplay of surface charge and hydrophilicity on fouling propensity and ammonium rejection. WATER RESEARCH 2021; 190:116678. [PMID: 33279747 DOI: 10.1016/j.watres.2020.116678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Membrane fouling and ammonium transmembrane diffusion simultaneously pose great challenges in membrane-based pre-concentration of domestic wastewater for efficient subsequent resources recovery (i.e., energy and nutrients). Herein, amine-functionalized osmotic membranes were fabricated by optimizing the grafting pathway of polyamidoamine (PAMAM) dendrimer to mitigate fouling and ammonium transmembrane diffusion. Compared to the control membrane, the PAMAM-grafted membranes with abundant primary amine groups possessed substantially increased hydrophilicity and positive charges (i.e., protonated primary amines) and thus exhibited superior anti-fouling capability and ammonium selectivity. With further increasing the PAMAM grafting ratio, the membrane exhibited a steady enhancement in ammonium selectivity and eventually achieved an ultra-high ammonium rejection of 99.4%. Nevertheless, the anti-fouling capability of such ammonium ultra-selective membrane was weakened due to the suppression of the adverse impact of excessive positive charges over the beneficial effect of increased surface hydrophilicity. This in turn leads to a drop of ammonium rejection below 90% during domestic wastewater concentration. This study demonstrates that the membrane with a moderate primary amine loading could achieve the highest anti-fouling capability with only less than 10% flux decline and meanwhile maintain an excellent ammonium rejection above 94% during raw domestic wastewater concentration. This work provides theoretical guidance for fabricating simultaneously enhanced anti-fouling and ammonia-rejecting membranes.
Collapse
Affiliation(s)
- Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141.
| | - Wei Long
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141
| | - Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
18
|
Suzaimi ND, Goh PS, Ismail AF, Mamah SC, Malek NANN, Lim JW, Wong KC, Hilal N. Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. MEMBRANES 2020; 10:E332. [PMID: 33171847 PMCID: PMC7695145 DOI: 10.3390/membranes10110332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
Forward osmosis (FO) has been recognized as the preferred alternative membrane-based separation technology for conventional water treatment technologies due to its high energy efficiency and promising separation performances. FO has been widely explored in the fields of wastewater treatment, desalination, food industry and bio-products, and energy generation. The substrate of the typically used FO thin film composite membranes serves as a support for selective layer formation and can significantly affect the structural and physicochemical properties of the resultant selective layer. This signifies the importance of substrate exploration to fine-tune proper fabrication and modification in obtaining optimized substrate structure with regards to thickness, tortuosity, and porosity on the two sides. The ultimate goal of substrate modification is to obtain a thin and highly selective membrane with enhanced hydrophilicity, antifouling propensity, as well as long duration stability. This review focuses on the various strategies used for FO membrane substrate fabrication and modification. An overview of FO membranes is first presented. The extant strategies applied in FO membrane substrate fabrications and modifications in addition to efforts made to mitigate membrane fouling are extensively reviewed. Lastly, the future perspective regarding the strategies on different FO substrate layers in water treatment are highlighted.
Collapse
Affiliation(s)
- Nur Diyana Suzaimi
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
- Department of Chemical Engineering, Alex Ekwueme Federal University, Ebonyi State 84001, Nigeria
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia;
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Kar Chun Wong
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
19
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
Affiliation(s)
- Gaetan Blandin
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
- Correspondence:
| | - Federico Ferrari
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marc Héran
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Xavier Martinez-Lladó
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
| |
Collapse
|
20
|
Santiago-Martoral L, Figueroa A, Nicolau E. Lyotropic Liquid Crystal-Based Membranes for Water Remediation: Fabrication, Characterization and Performance Evaluation. ACS OMEGA 2020; 5:17940-17946. [PMID: 32743166 PMCID: PMC7391249 DOI: 10.1021/acsomega.0c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
In water remediation, biomimetic membranes are gaining much attention due to their selectivity, dynamic stability, nontoxicity, and biocompatibility. Lyotropic liquid crystals (LLCs) are self-organizing networks that can conform to an array of geometries with high pore densities. As such, LLCs are excellent membrane materials for water applications because they are water insoluble and are manipulated to conform to an array of morphologies that provide natural water channels that are readily tunable in size. They have the ability to create uniform pores, between the range of 1 and 5 nm, with large surface areas. Thus, this work focuses on the design, fabrication, and characterization of LLC-modified Janus-type membranes for forward osmosis applications. Physical characterization of the membranes was performed using scanning electron microscopy (SEM), and the results show an open-pore radius and the presence of both finger- and sponge-like pores depending on membrane preparation. The contact angle assessment indicates that as the membranes are further modified with other polymers (e.g., PAN), higher hydrophilicity and surface energy are achieved. Moreover, the Brunauer-Emmett-Teller (BET) analysis showed a significant variation in the pore distribution between membranes. Functionalized membranes presented satisfactory water flux and superior salt rejection compared to nonfunctionalized membranes. SupPACMoDS membranes are 83% more efficient at preventing salt back flux than the nonmodified version. This is credited to the thickness and pore structure provided by the PAN support layer in the membrane.
Collapse
Affiliation(s)
- Liz Santiago-Martoral
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad
Ste. 1701, San Juan, Puerto
Rico 00925-2537, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Adrialis Figueroa
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad
Ste. 1701, San Juan, Puerto
Rico 00925-2537, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Eduardo Nicolau
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad
Ste. 1701, San Juan, Puerto
Rico 00925-2537, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
21
|
Sengur-Tasdemir R, Pekgenc E, Urper-Bayram GM, Ergon-Can T, Tutuncu HE, Zeytuncu B, Gul-Karaguler N, Ates-Genceli E, Koyuncu I. Determination of the effect of proteoliposome concentration on Aquaporin Z incorporated nanofiltration membranes. ENVIRONMENTAL TECHNOLOGY 2020; 41:2229-2239. [PMID: 30574839 DOI: 10.1080/09593330.2018.1561756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We report on the fabrication of AqpZ immobilized flat sheet membranes. The effects of interfacial polymerization conditions as well as proteoliposome concentration were evaluated. Commercial AqpZ were used as positive control for cloned AqpZ. Specific permeate flux of membranes at higher proteoliposome concentrations increased up to 25 times higher than thin film composite membranes; however; MgSO4 rejection is lowered almost to 1.5%. FTIR and SEM confirm immobilization of proteoliposomes. Thermal analysis showed that increasing proteoliposome concentration has no positive effect on the incorporation of proteoliposomes into polyamide structures. On the contrary, at lower proteoliposome concentrations, incorporation of proteoliposomes was found better. When combined membrane performances were compared in terms of specific permeate flux; MgSO4 and humic rejection and flux recovery after humic acid filtration, the performance of cloned AqpZ incorporated membranes (having 0.1 mg/mL proteoliposome concentration and polyamide formed with 2 min piperazine reaction time) improved 1.7 times regarding TFC membranes. According to the results, increasing proteoliposome concentration did not improve nanofiltration membrane performance. On the contrary, lower proteoliposome concentrations were found to be more effective in increasing membrane performance.
Collapse
Affiliation(s)
- Reyhan Sengur-Tasdemir
- Nanoscience and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Enise Pekgenc
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Gulsum Melike Urper-Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Tulay Ergon-Can
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Havva Esra Tutuncu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Turkey
| | - Bihter Zeytuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Nevin Gul-Karaguler
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Turkey
| | - Esra Ates-Genceli
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ismail Koyuncu
- Nanoscience and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
22
|
Omir A, Satayeva A, Chinakulova A, Kamal A, Kim J, Inglezakis VJ, Arkhangelsky E. Behaviour of Aquaporin Forward Osmosis Flat Sheet Membranes during the Concentration of Calcium-Containing Liquids. MEMBRANES 2020; 10:E108. [PMID: 32456094 PMCID: PMC7281773 DOI: 10.3390/membranes10050108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
This study aims to examine the scaling and performance of flat sheet aquaporin FO membranes in the presence of calcium salts. Experiments showed that the application of calcium sulphate (CaSO4) resulted in an 8%-78% decline in the water flux. An increase in the cross-flow velocity from 3 to 12 cm/s reduced the decline in the flux by 16%. The deposition of salt crystals on the membrane surface led to the alteration in the membrane's intrinsic properties. Microscopy, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and X-Ray fluorescence (XRF) analyses confirmed measurements of the zeta potential and contact angle. The use of a three-salt mixture yielded severe scaling as compared with the application of calcium sulphate dehydrate (CaSO4 × 2H2O), i.e., a result of two different crystallisation mechanisms. We found that the amount of sodium chloride (NaCl), saturation index, cross-flow velocity, and flow regime all play an important role in the scaling of aquaporin FO flat sheet membranes.
Collapse
Affiliation(s)
- Alibek Omir
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
| | - Aliya Satayeva
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
| | - Aigerim Chinakulova
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arailym Kamal
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
| | - Jong Kim
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
| | - Vassilis J. Inglezakis
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
- Department of Chemical & Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Elizabeth Arkhangelsky
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
23
|
Abstract
The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.
Collapse
|
24
|
Ahmed S, Unar IN, Khan HA, Maitlo G, Mahar RB, Jatoi AS, Memon AQ, Shah AK. Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9619-9636. [PMID: 31925687 DOI: 10.1007/s11356-019-07441-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
This work aims to utilize fly ash from a thermal power station for melanoidin reduction from distillery effluent by adsorption. To accomplish this, coal fly ash was modified through chemical treatment and was then tested for melanoidin adsorption as a function of various melanoidin concentrations, contact time, and pH. The specific novelty of this study is the evaluation of coal fly ash as a low-cost adsorbent for melanoidin removal. Furthermore, the simulation study was carried out using Aspen ADSIM software in order to optimize the commercial usage of the prepared adsorbent. The main results achieved include the maximum removal efficiency of 84% which was reached at initial melanoidin concentration of 1100 mg L-1 (5% dilution), pH 6, and a contact time of 120 min. The Langmuir and Freundlich isotherm models were used to evaluate adsorption isotherms. The maximum adsorption capacity of 281.34 mg/g was observed using the Langmuir isotherm. Furthermore, pseudo-first- and pseudo-second-order and intra-particle diffusion models were used to fit adsorption kinetic data. The pseudo-second-order was best describing the adsorption kinetic with a faster kinetic rate of 0.142 mg g-1 min-1. CFA (coal fly ash) after acidic activation resulted in a slightly higher surface area, average pore volume, and pore size. The maximum breakthrough time and adsorbent saturation time were achieved at initial melanoidin concentration of 1 mol/lit, bed height of 2.5 m, and flow rate of 50 lit/min.
Collapse
Affiliation(s)
- Shoaib Ahmed
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Sindh, 76060, Pakistan.
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Sindh, 74800, Pakistan.
| | - Imran Nazir Unar
- Chemical Engineering Department, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| | - Hassnain Abas Khan
- Clean Combustion Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ghulamullah Maitlo
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Sindh, 74800, Pakistan
| | - Rasool Bux Mahar
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Sindh, 76060, Pakistan
| | - Abdul Sattar Jatoi
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Sindh, 74800, Pakistan
| | - Abdul Qayoom Memon
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Sindh, 74800, Pakistan
| | - Abdul Karim Shah
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Sindh, 74800, Pakistan
| |
Collapse
|
25
|
Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment. WATER 2019. [DOI: 10.3390/w12010107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.
Collapse
|
26
|
Zhang M, Cai Z, Xie L, Zhang Y, Tang L, Zhou Q, Qiang Z, Zhang H, Zhang D, Pan X. Comparison of coagulative colloidal microbubbles with monomeric and polymeric inorganic coagulants for tertiary treatment of distillery wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133649. [PMID: 31386957 DOI: 10.1016/j.scitotenv.2019.133649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/27/2019] [Indexed: 05/13/2023]
Abstract
The flotation using coagulative colloidal gas aphrons (CCGAs) is of great potential in effectively removing the recalcitrant dissolved organic matter (DOM) and colorants from the bio-chemically treated cassava distillery wastewater. As bubble modifier, the monomeric and polymeric inorganic coagulants need to be studied considering their distinct influence on the surfactant/coagulant complex, the properties of colloidal aphrons as well as the process performance and mechanisms. Such studies help to create robust CCGAs with high flotation potential. In this work, the commonly-used monomeric and polymeric Al(III)- and Fe(III)-coagulants were combined with the cationic surfactant - cetyl trimethylammonium bromide (CTAB) to generate CCGAs. The CCGAs functionalized with Al(III)-coagulants (both monomeric and polymeric ones) were featured as small bubble size, strong stability and high air content. Particularly, the monomeric Al(III)-coagulant (AlCl3 in this work) resulted in low surface tension and high foamability when being mixed with CTAB in the bubble generation solution. Those CCGAs achieved high removal efficiencies of DOM and colorants at low coagulant concentrations. The molecular weight of DOM in effluent was well controlled below 1 kDa by CCGAs. For the flocs obtained from CCGA-flotation, the characteristic Raman band of DOM and colorants showed the layer-by-layer variation of Raman intensity which decreased from the outer layer to the center. In contrast with the conventional coagulation-flotation, the reduction of coagulant dosage by CCGAs was 67% (AlCl3), 25% (polyaluminum chloride), 60% (Fe2(SO4)3) and 40% (polyferric sulfate). The sludge production could then be largely reduced, and meanwhile, the retention time was shortened by 9.5 min.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongxia Cai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yin Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linfeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Jingxi EZ, De Jager D, Augustine R, Petrinic I, Helix-Nielsen C, Sheldon MS. Forward osmosis: dyeing draw solutions for water reclamation from feed water resources. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1053-1062. [PMID: 31799949 DOI: 10.2166/wst.2019.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive Black 5 and Basic Blue 41 GRL dyeing solutions (dye-to-salt mixture in a 1:10 dye-to-salt mass ratio) were investigated as draw solutions (DS) in a forward osmosis (FO) system with a biomimetic membrane. Synthetic seawater (SSW) and textile wastewater (TWW1 and TWW2) were evaluated as feed solutions (FS) for water reclamation. Reactive Black 5 and Basic Blue 41 GRL were diluted from 0.02 M to concentrations of 0.002 and 0.004 M, respectively. With Reactive Black 5 as DS and SSW as FS, an initial flux of 20.24 L/m2 h and water recovery of 75% was achieved. Using TWW1 and TWW2, initial water fluxes of 19.51 and 13.43 L/m2 h were achieved, respectively, with a 30% water recovery. Using Basic Blue 41 GRL, initial water fluxes of 18.72, 15.13 and 13.42 L/m2 h were achieved with SSW, TWW1, and TWW2 as FS with water recoveries of 50%, 20% and 20%, respectively. The average reverse solute fluxes for Reactive Black 5 and Basic Blue 41 GRL were 0.06 to 0.34 g/m2 h, respectively. Diluted dyeing solutions were produced, with simultaneous water reclamation from SSW and TWW resulting in similar or higher water fluxes and lower reverse solute fluxes compared with other commercially available membranes.
Collapse
Affiliation(s)
- Estella Z Jingxi
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| | - Debbie De Jager
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| | - Robyn Augustine
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| | - Irena Petrinic
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail: ; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Claus Helix-Nielsen
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| | - Marshall S Sheldon
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa E-mail:
| |
Collapse
|
28
|
Bao X, Wu Q, Shi W, Wang W, Zhu Z, Zhang Z, Zhang R, Zhang B, Guo Y, Cui F. Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Schneider C, Rajmohan RS, Zarebska A, Tsapekos P, Hélix-Nielsen C. Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1021-1030. [PMID: 30180310 DOI: 10.1016/j.scitotenv.2018.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Forward osmosis (FO) can be used to reclaim nutrients and high-quality water from wastewater streams. This could potentially contribute towards relieving global water scarcity. Here we investigated the feasibility of extracting water from four real and four synthetic anaerobically digested effluents, using FO membranes. The goal of this study was to 1) evaluate FO membrane performance in terms of water flux and nutrient rejection 2) examine the methane yield that can be achieved and 3) analyse FO membrane fouling. Out of the four tested real anaerobically digested effluents, swine manure and potato starch wastewater achieved the highest combined average FO water flux (>3 liter per square meter per hour (LMH) with 0.66 M MgCl2 as initial draw solution concentration) and methane yield (>300 mL CH4 per gram of organic waste expressed as volatile solids (VS)). Rejection of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN) and total phosphorous (TP) was high (up to 96.95%, 95.87% and 99.83%, respectively), resulting in low nutrient concentrations in the recovered water. Membrane autopsy revealed presence of organic and biological fouling on the FO membrane. However, no direct correlation between feed properties and methane yield and fouling potential was found, indicating that there is no inherent trade-off between high water flux and high methane production.
Collapse
Affiliation(s)
- Carina Schneider
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Rajath Sathyadev Rajmohan
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Agata Zarebska
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Panagiotis Tsapekos
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
30
|
Kumar V, Sharma DC. Distillery Effluent: Pollution Profile, Eco-friendly Treatment Strategies, Challenges and Future Prospects. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Fabrication of fullerenol-incorporated thin-film nanocomposite forward osmosis membranes for improved desalination performances. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1593-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Forward Osmosis Application in Manufacturing Industries: A Short Review. MEMBRANES 2018; 8:membranes8030047. [PMID: 30041478 PMCID: PMC6160976 DOI: 10.3390/membranes8030047] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023]
Abstract
Forward osmosis (FO) is a membrane technology that uses the osmotic pressure difference to treat two fluids at a time giving the opportunity for an energy-efficient water and wastewater treatment. Various applications are possible; one of them is the application in industrial water management. In this review paper, the basic principle of FO is explained and the state-of-the-art regarding FO application in manufacturing industries is described. Examples of FO application were found for food and beverage industry, chemical industry, pharmaceutical industry, coal processing, micro algae cultivation, textile industry, pulp and paper industry, electronic industry, and car manufacturing. FO publications were also found about heavy metal elimination and cooling water treatment. However, so far FO was applied in lab-scale experiments only. The up-scaling on pilot- or full-scale will be the essential next step. Long-term fouling behavior, membrane cleaning methods, and operation procedures are essential points that need to be further investigated. Moreover, energetic and economic evaluations need to be performed before full-scale FO can be implemented in industries.
Collapse
|