1
|
Wan W, Gadd GM, Gu J, Liu W, Chen P, Zhang Q, Yang Y. Beyond biogeographic patterns: Processes shaping the microbial landscape in soils and sediments along the Yangtze River. MLIFE 2023; 2:89-100. [PMID: 38818339 PMCID: PMC10989888 DOI: 10.1002/mlf2.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/01/2024]
Abstract
Deciphering biogeographic patterns of microorganisms is important for evaluating the maintenance of microbial diversity with respect to the ecosystem functions they drives. However, ecological processes shaping distribution patterns of microorganisms across large spatial-scale watersheds remain largely unknown. Using Illumina sequencing and multiple statistical methods, we characterized distribution patterns and maintenance diversity of microorganisms (i.e., archaea, bacteria, and fungi) in soils and sediments along the Yangtze River. Distinct microbial distribution patterns were found between soils and sediments, and microbial community similarity significantly decreased with increasing geographical distance. Physicochemical properties showed a larger effect on microbial community composition than geospatial and climatic factors. Archaea and fungi displayed stronger species replacements and weaker environmental constraints in soils than that in sediments, but opposite for bacteria. Archaea, bacteria, and fungi in soils showed broader environmental breadths and stronger phylogenetic signals compared to those in sediments, suggesting stronger environmental adaptation. Stochasticity dominated community assemblies of archaea and fungi in soils and sediments, whereas determinism dominated bacterial community assembly. Our results have therefore highlighted distinct microbial distribution patterns and diversity maintenance mechanisms between soils and sediments, and emphasized important roles of species replacement, environmental adaptability, and ecological assembly processes on microbial landscape. Our findings are helpful in predicting loss of microbial diversity in the Yangtze River Basin, and might assist the establishment of environmental policies for protecting fragile watersheds.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanChina
| | - Geoffrey M. Gadd
- Geomicrobiology Group, School of Life SciencesUniversity of DundeeDundeeScotlandUK
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution ControlChina University of PetroleumBeijingChina
| | - Ji‐Dong Gu
- Environmental Science and Engineering GroupGuangdong Technion‐Israel Institute of TechnologyGuangdongChina
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanChina
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanChina
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanChina
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research StationChinese Academy of Sciences & Hubei ProvinceWuhanChina
| |
Collapse
|
2
|
Jamshidi S, Naderi A. A quantitative approach on environment-food nexus: integrated modeling and indices for cumulative impact assessment of farm management practices. PeerJ 2023; 11:e14816. [PMID: 36743953 PMCID: PMC9893910 DOI: 10.7717/peerj.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
Background Best management practices (BMPs) are promising solutions that can partially control pollution discharged from farmlands. These strategies, like fertilizer reduction and using filter strips, mainly control nutrient (N and P) pollution loads in basins. However, they have secondary impacts on nutrition production and ecosystem. This study develops a method to evaluate the cumulative environmental impacts of BMPs. It also introduces and calculates food's environmental footprint (FEF) for accounting the total environmental damages per nutrition production. Methods This study combines the soil and water assessment tool (SWAT) for basin simulation with the indices of ReCiPe, a life cycle impact assessment (LCIA) method. By these means, the effectiveness of BMPs on pollution loads, production yields, and water footprints (WFs) are evaluated and converted as equivalent environmental damages. This method was verified in Zrebar Lake, western Iran. Here, water consumption, as WFs, and eutrophication are the main indices that are converted into equivalent health and ecological impairments. Two methods, entropy and environmental performance index (EPI), are used for weighting normalized endpoints in last step. Results Results showed that using 25-50% less fertilizer and water for irrigation combined with vegetated filter strips reduce N and P pollution about 34-60% and 8-21%, respectively. These can decrease ecosystem damages by 5-9% and health risks by 7-14%. Here, freshwater eutrophication is a more critical damage in ecosystem. However, using less fertilizer adversely reduces total nutrition production by 1.7-3.7%. It means that BMPs can decline total ecological damages and health risks, which threatens nutrition production. FEF presents a tool to solve this dilemma about the sustainability of BMPs. In the study area, a 4-9% decrease in FEF means that BMPs are more environmental friendly than nutrition menacing. Finally, this study concludes that SWAT-ReCiPe with FEF provides a quantitative framework for environment-food nexus assessment. However, due to the uncertainties, this method is recommended as a tool for comparing management strategies instead of reporting certain values.
Collapse
|
3
|
Pierrat E, Barbarossa V, Núñez M, Scherer L, Link A, Damiani M, Verones F, Dorber M. Global water consumption impacts on riverine fish species richness in Life Cycle Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158702. [PMID: 36108858 DOI: 10.1016/j.scitotenv.2022.158702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Reduced river discharge and flow regulation are significant threats to freshwater biodiversity. An accurate representation of potential damage of water consumption on freshwater biodiversity is required to quantify and compare the environmental impacts of global value chains. The effect of discharge reduction on fish species richness was previously modeled in life cycle impact assessment, but models were limited by the restricted geographical scope of underlying species-discharge relationships and the small number of species data. Here, we propose a model based on a novel regionalized species-discharge relationship (SDR). Our SDR-based model covers 88 % of the global landmass (2320 river basins worldwide excluding deserts and permanently frozen areas) and is based on a global dataset of 11,450 riverine fish species, simulated river discharge, elevation, and climate zones. We performed 10-fold cross-validation to select the best set of predictors and validated the obtained SDRs based on observed discharge data. Our model performed better than previous SDRs employed in life cycle impact assessment (Kling-Gupta efficiency coefficient about 4 times larger). We provide both marginal and average models with their uncertainty ranges for assessing scenarios of small and large-scale water consumption, respectively, and include regional and global species loss. We conducted an illustrative case study to showcase the method's applicability and highlight the differences with the currently used approach. Our models are useful for supporting sustainable water consumption and riverine fish biodiversity conservation decisions. They enable a more specific, reliable, and complete impact assessment by differentiating impacts on regional riverine fish species richness and irreversible global losses, including up-to-date species data, and providing spatially explicit values with high geographical coverage.
Collapse
Affiliation(s)
- Eleonore Pierrat
- Quantitative Sustainability Assessment division, Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark.
| | - Valerio Barbarossa
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands; PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
| | - Montserrat Núñez
- Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Andreas Link
- Chair of Sustainable Engineering, Technical University of Berlin, 10623 Berlin, Germany
| | - Mattia Damiani
- European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra, VA, Italy
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Martin Dorber
- Industrial Ecology Programme, Department of Energy and Process Engineering, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Zhang P, Liu Q, Wang Y, Zhu DZ, Liang R, Qin L, Li R, Ji Q, Li K. River habitat assessment and restoration in high dam flood discharge systems with total dissolved gas supersaturation. WATER RESEARCH 2022; 221:118833. [PMID: 35841786 DOI: 10.1016/j.watres.2022.118833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The success of river habitat restoration relies on accurate assessment proxies. However, determining how to quantitatively assess the impact of multiple stressors during flood discharge from high dams in riverine ecosystems and where and how to implement more reliable recovery interventions remain challenges. Here, we developed a bottom-up mechanistic framework for assessing the effects of total dissolved gas supersaturation (TDGS) and hydrodynamics on fish habitat quality and applied it to the downstream river reach of the Xiangjiaba Dam in Southwest China. The results showed that the available habitat area of river sturgeon was the smallest, while Chinese sucker had the largest available habitat area among the three target species under all discharge scenarios. Although the TDGS levels were evenly mixed laterally, the habitat suitability index indicated that the suitable habitats were primarily within both sides of the river reach under all scenarios, which is contrary to findings based on the traditional TDGS risk assessment model. The traditional TDGS risk assessment model overestimates the impact of dams on habitats. This divergence reflected the sensitivity of the habitat assessment to fish habitat preferences, fish tolerance to TDGS and the biological response of fish under TDGS. Additionally, the priority areas for restoration can be identified by habitat suitability index with lower values. We simulated twenty-four schemes and found that interventions such as stone groups, ecological spur dike, water-retaining weir and river dredging can enhance habitat suitability for fish species under multiple stressors, providing novel insights into where and how to mitigate the impact of TDGS. Our findings offer a transferable framework for the quantitative evaluation of fish habitat and implementation of restoration management during dam flood discharge periods, thus providing a new perspective for biodiversity conservation and habitat restoration in dam-regulated rivers with TDGS around the world.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qingyuan Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanming Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - David Z Zhu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ruifeng Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Leilei Qin
- China Three Gorges Projects Development Co., Ltd., Chengdu 610042, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qianfeng Ji
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Kefeng Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Liu Q, Zhang P, Cheng B, Li Y, Li J, Zhou H, Sun G, Qing J, Zhu Z, Lu Y, Zhao P. Incorporating the life stages of fish into habitat assessment frameworks: A case study in the Baihetan Reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113663. [PMID: 34482112 DOI: 10.1016/j.jenvman.2021.113663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Although it is widely accepted that the construction of dams may alter fish habitats, few studies have followed the life cycles of fish and combined the environmental conditions with the ecological behaviors and habit preferences of fish during reproductive processes to assess its effects of dam construction. In this study, we call for more sophisticated and holistic assessment framework, including effectiveness of technologies intended to mitigate environmental impacts in different life stages. An assessment framework that considers the swimming ability, perception ability of water flow and environmental preference of different fish species during migration, spawning and hatching was proposed. We used the Baihetan Reservoir as an example environment to assess the impoundment effect on the habitat of a tributary upstream of the reservoir. We observed shifts in the habitats of target fish in different life stages which is dominated by reservoir operation of the Baihetan Dam. Combined with the response of fish activities to impoundment, the selection of suitable positions for artificial breeding and release projects and the outlet of the fish transportation system were recommended measures to improve the migration possibilities. Our reassessment results also demonstrated the theoretical possibility and feasibility of joint improvements in spawning and hatching periods using instream structures. Our framework provides a complete set of "assessment-solution" processes for developers and managers to address the aquatic ecological degradation caused by resource development, and its use is strongly recommended for assessments or assessments of damming effects in other regions and on other fish species.
Collapse
Affiliation(s)
- Qingyuan Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Bixin Cheng
- Shanghai Investigation, Design and Research Institute Corporation Limited, Shanghai, 200434, China
| | - Yong Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jia Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Huhai Zhou
- Yangtze River Fisheries Research Institute of Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Gan Sun
- China Three Gorges Construction (Group) Co., Ltd., Chengdu, 610041, China
| | - Jie Qing
- Shanghai Investigation, Design and Research Institute Corporation Limited, Shanghai, 200434, China
| | - Zaixiang Zhu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Lu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Pengxiao Zhao
- Hydro-China Huadong Engineering Corporation Limited, Hangzhou, 310014, China
| |
Collapse
|
6
|
Damiani M, Roux P, Loiseau E, Lamouroux N, Pella H, Morel M, Rosenbaum RK. A high-resolution life cycle impact assessment model for continental freshwater habitat change due to water consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146664. [PMID: 33839662 DOI: 10.1016/j.scitotenv.2021.146664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Global value chains and climate change have a significant impact on water resources and increasingly threaten freshwater ecosystems. Recent methodological proposals for life cycle impact assessment (LCIA), evaluate water use impacts on freshwater habitats based on river hydraulic parameters alterations. However, they are limited to French rivers due to lack of global data and models. On this basis, this article proposes an approach to compute regionalized characterization factors for modeling river habitat change potential (HCP) induced by water consumption, potentially applicable worldwide. A simplified model is developed for fish guilds and invertebrates. Based on French datasets, it establishes a relationship between HCP and river hydraulic parameters. A methodology to derive discharge and hydraulic geometry at the reach scale is proposed and applied to European and Middle Eastern rivers below 60°N latitude. Regionalized HCPs are calculated at the river reach scale and aggregated at watershed. Then, the impact of agricultural water use in contrasted European and Middle Eastern countries is evaluated comparing the outcomes from the HCP and the Available Water Remaining (AWARE) models at the national scale, considering water supply mix data. The same analysis is carried out on selected river basins. Finally, result consistency, uncertainty and global applicability of the overall approach are discussed. The study demonstrates the reproducibility of the impact model developed for French rivers on any hydrographic network where comparable ecological, hydrological and hydraulic conditions are met. Furthermore, it highlights the need to characterize impacts at a higher spatial resolution in areas where HCP is higher. Large scale quantification of HCP opens the way to the operationalization of mechanistic LCIA models in which the habitat preferences of freshwater species are taken into account to assess the impacts of water consumption on biodiversity.
Collapse
Affiliation(s)
- Mattia Damiani
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre-Venezia, Italy.
| | - Philippe Roux
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France
| | - Eléonore Loiseau
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France
| | | | - Hervé Pella
- INRAE Lyon, UR RiverLy, Villeurbanne, France
| | | | - Ralph K Rosenbaum
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France; GIRO Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
7
|
Sekine M, Wang J, Yamamoto K, Kanno A. Fish habitat evaluation based on width-to-depth ratio and eco-environmental diversity index in small rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34781-34795. [PMID: 32382905 DOI: 10.1007/s11356-020-08691-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
We estimated the performance of river fish habitat evaluation using width-to-depth ratio (WDR) in comparison with eco-environmental diversity (EED) to propose an inexpensive and easy-to-use habitat evaluation procedure, which is applicable to small river construction works. WDR calculation costs less than that of EED. For verification, 25 stations in eight rivers were selected and fish were captured using electrofishing. pH, electrical conductivity, turbidity, dissolved oxygen (DO), water temperature, fraction of forest, farmland, and residential area in each basin were measured to examine possible influence of water quality. Results show that there is no major water quality issue in the target rivers. Although fish habitat is classified as good when WDR is higher than 6, it cannot be evaluated by WDR when it is lower than 6. EED has positive relationship with fish habitat for any WDR value. Thus, if a river geometry design in a river work results in WDR higher than 6, no measures need to be taken regarding fish habitat condition; however, if it is less than 6, it is necessary to examine whether the construction work lowers the EED or not.
Collapse
Affiliation(s)
- Masahiko Sekine
- Division of Environmental Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Jianing Wang
- Division of System Design and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Koichi Yamamoto
- Division of Environmental Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Ariyo Kanno
- Division of Environmental Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|