• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4608411)   Today's Articles (4842)   Subscriber (49375)
For: Yang F, Ma J, Zhang X, Huang X, Liang P. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance. Water Res 2019;164:114904. [PMID: 31382149 DOI: 10.1016/j.watres.2019.114904] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Number Cited by Other Article(s)
1
Zhang X, Pang M, Wei Y, Liu F, Zhang H, Zhou H. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water. WATER RESEARCH 2024;251:121147. [PMID: 38277832 DOI: 10.1016/j.watres.2024.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
2
He Y, Gao T, Gong A, Liang P. Sustained Phosphorus Removal and Enrichment through Off-Flow Desorption in a Reservoir of Membrane Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024;58:3031-3040. [PMID: 38299499 DOI: 10.1021/acs.est.3c08291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
3
Xi J, Ming H, Liu S, Shen X, Geng C, Gao W, Meng J, Gao Y, Zhao Z, Lv J, Guan Y, Liang J. Effect of anion-exchange membrane type for FCDI performance at different concentrations. ENVIRONMENTAL TECHNOLOGY 2023;44:3585-3591. [PMID: 35588316 DOI: 10.1080/09593330.2022.2064243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
4
Shi C, Wang H, Li A, Zhu G, Zhao X, Wu F. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization. WATER RESEARCH 2023;230:119517. [PMID: 36608524 DOI: 10.1016/j.watres.2022.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
5
Xu L, Peng S, Wu K, Tang L, Wu M, Zong Y, Mao Y, Wu D. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field. WATER RESEARCH 2022;222:118963. [PMID: 35970008 DOI: 10.1016/j.watres.2022.118963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
6
Luo L, He Q, Yi D, Zu D, Ma J, Chen Y. Indirect charging of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI. WATER RESEARCH 2022;220:118688. [PMID: 35661514 DOI: 10.1016/j.watres.2022.118688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
7
Zhang X, Zhou H, He Z, Zhang H, Zhao H. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination. WATER RESEARCH 2022;220:118642. [PMID: 35635913 DOI: 10.1016/j.watres.2022.118642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
8
Xu L, Peng S, Mao Y, Zong Y, Zhang X, Wu D. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization. WATER RESEARCH 2022;216:118290. [PMID: 35306460 DOI: 10.1016/j.watres.2022.118290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
9
Luo L, He Q, Chen S, Yang D, Chen Y. Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination. ENVIRONMENTAL RESEARCH 2022;208:112727. [PMID: 35063431 DOI: 10.1016/j.envres.2022.112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
10
Jiang H, Zhang J, Luo K, Xing W, Du J, Dong Y, Li X, Tang W. Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;804:150166. [PMID: 34517327 DOI: 10.1016/j.scitotenv.2021.150166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
11
Zhou J, Zhang X, Zhang Y, Wang D, Zhou H, Li J. Effective inspissation of uranium(VI) from radioactive wastewater using flow electrode capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
12
Minh Phuoc N, Anh Thu Tran N, Minh Khoi T, Bin Jung H, Ahn W, Jung E, Yoo CY, Kang HS, Cho Y. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
13
Xu L, Mao Y, Zong Y, Peng S, Zhang X, Wu D. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:13286-13296. [PMID: 34529405 DOI: 10.1021/acs.est.1c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
14
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021;203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
15
He C, Lian B, Ma J, Zhang C, Wang Y, Mo H, Waite TD. Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. WATER RESEARCH 2021;203:117498. [PMID: 34371229 DOI: 10.1016/j.watres.2021.117498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
16
Shen K, Wei Q, Wang X, Ru Q, Hou X, Wang G, Hui KS, Shen J, Hui KN, Chen F. Electrocatalytic desalination with CO2 reduction and O2 evolution. NANOSCALE 2021;13:12157-12163. [PMID: 34236376 DOI: 10.1039/d1nr02578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
17
Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, Liang P. Flow-electrode capacitive deionization: A review and new perspectives. WATER RESEARCH 2021;200:117222. [PMID: 34029869 DOI: 10.1016/j.watres.2021.117222] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
18
Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:4243-4267. [PMID: 33724803 DOI: 10.1021/acs.est.0c06552] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
19
Xu L, Mao Y, Zong Y, Wu D. Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system. WATER RESEARCH 2021;190:116782. [PMID: 33387952 DOI: 10.1016/j.watres.2020.116782] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
20
Ashrafizadeh SN, Ganjizade A, Navapour A. A brief review on the recent achievements in flow-electrode capacitive deionization. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0677-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
21
Jiang Y, Liang Q, Chu N, Hao W, Zhang L, Zhan G, Li D, Zeng RJ. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020;741:140198. [PMID: 32574921 DOI: 10.1016/j.scitotenv.2020.140198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
22
Optimal conditions for efficient flow-electrode capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116626] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
23
Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
24
Membrane-electrode assemblies for flow-electrode capacitive deionization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
25
Zhang C, Wu L, Ma J, Wang M, Sun J, Waite TD. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. WATER RESEARCH 2020;173:115580. [PMID: 32065937 DOI: 10.1016/j.watres.2020.115580] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
26
Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. WATER RESEARCH 2020;168:115186. [PMID: 31655437 DOI: 10.1016/j.watres.2019.115186] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
27
Zhang C, Wu L, Ma J, Pham AN, Wang M, Waite TD. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:13364-13373. [PMID: 31657549 DOI: 10.1021/acs.est.9b04436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA