1
|
Hu R, Li JY, Yu Q, Yang SQ, Ci X, Qu B, Yang L, Liu ZQ, Liu H, Yang J, Sun S, Cui YH. Catalytic ozonation of reverse osmosis concentrate from coking wastewater reuse by surface oxidation over Mn-Ce/γ-Al 2O 3: Effluent organic matter transformation and its catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134363. [PMID: 38663291 DOI: 10.1016/j.jhazmat.2024.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-Al2O3 could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.9%) of brine derived from a two-stage reverse osmosis treatment. Experimental and theoretical calculation results indicate that introducing Mn could increase the active points of catalyst surface, and introducing Ce could optimize d-band electronic structures and promote the electron transport capacity, enhancing HO• bound to the catalyst surface ([HO•]ads) generation. [HO•]ads plays key roles for degrading the intermediates and transfer them into low molecular weight organics, and further decrease COD, molecular weights and number of organics in reverse osmosis concentrate. Under the same reaction conditions, the presence of Mn/γ-Al2O3 catalyst can reduce ΔO3/ΔCOD by at least 37.6% compared to ozonation alone. Furthermore, Mn-Ce/γ-Al2O3 catalytic ozonation can reduce the ΔO3/ΔCOD from 2.6 of Mn/γ-Al2O3 catalytic ozonation to 0.9 in the case of achieving similar COD removal. Catalytic ozonation has the potential to treat reverse osmosis concentrate derived from bio-treated coking wastewater reclamation.
Collapse
Affiliation(s)
- Rui Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiyi Yu
- China United Engineering Corporation Limited, Hangzhou 310052, PR China
| | - Sui-Qin Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Xinbo Ci
- Hebei Think-do Water Treatment Technology Co., Ltd., Shijiazhuang 050035, PR China
| | - Bing Qu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liwei Yang
- Shandong Zhangqiu Blower Co., Ltd., Jinan 250200, PR China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongquan Liu
- Hebei Think-do Water Treatment Technology Co., Ltd., Shijiazhuang 050035, PR China
| | - Jingjing Yang
- Key Laboratory of Suzhou Sponge City Technology, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
2
|
Mahmood Z, Garg S, Yuan Y, Xie L, Wang Y, Waite TD. Performance evaluation and optimization of a suspension-type reactor for use in heterogeneous catalytic ozonation. WATER RESEARCH 2024; 254:121410. [PMID: 38471200 DOI: 10.1016/j.watres.2024.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Packed fixed-bed reactors are traditionally used for heterogeneous catalytic ozonation. However, a high solid-to-liquid requirement, poor ozone dissolution, ineffective utilization of catalyst surface area, and production of large amounts of catalyst waste impede application of such reactors. In this study, we designed a suspension catalytic ozonation reactor and compared the performance of this reactor with that of a traditional fixed-bed catalytic ozonation reactor employing oxalic acid (OA) as the target contaminant. Our results showed that total O3 dissolved into the suspension reactor (117-134 mg.L-1) was much higher compared to that measured in the fixed-bed reactor (53 mg.L-1) due to a higher O3(g) interphase mass transfer rate in the suspension reactor. In accordance with the higher O3(g) interphase mass transfer, we observed a much higher proportional OA removal (32 %) compared to that achieved in the fixed-bed reactor (10%) employing an Fe-oxide catalyst supported on Al2O3 (Fe-oxide@Al2O3) in both reactors. Use of a double-layered Cu-Al hydroxide (Cu-Al LDHs) catalyst in the suspension reactor further enhanced the performance with nearly 90 % OA removal observed. Given the superior performance of the suspension reactor, we investigated the impact of operating conditions (catalyst dosage, hydraulic retention time and ozone dosage) employing Cu-Al LDHs as the catalyst. We also developed a mathematical kinetic model to describe the performance of the suspension reactor and, through use of the kinetic model, showed that O3(g) interphase transfer rate was the rate-limiting step in OA removal. Thus, improvement in ozone gas diffuser design is required to improve the performance of the suspension reactor. Overall, the present study demonstrated that suspension reactors were more effective than fixed-bed reactors for oxidation of surface-active organic compounds such as OA due to the higher ozone interphase mass transfer rate and effective utilization of the catalyst surface area that can be achieved. As such, further research on suspension reactor design and development of catalysts suitable for use in suspension reactors should facilitate large-scale application of catalytic ozonation processes by the wastewater treatment industry.
Collapse
Affiliation(s)
- Zarak Mahmood
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Shikha Garg
- Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia
| | - Yuting Yuan
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Ling Xie
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Yuan Wang
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China; Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia
| | - T David Waite
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China; Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
3
|
Yin X, Zhang J, Chen S, Li W, Zhu H, Wei K, Zhang Y, Chen H, Han W. Electric field-enhanced heterogeneous catalytic ozonation (EHCO) process for sulfadiazine removal: The role of cathodic reduction. CHEMOSPHERE 2024; 351:141226. [PMID: 38228193 DOI: 10.1016/j.chemosphere.2024.141226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
In this work, an electric field-enhanced heterogeneous catalytic ozonation (EHCO) was systematically investigated using a prepared FeOx/PAC catalyst. The EHCO process exhibited high sulfadiazine (SDZ) and TOC removal efficiency compared with electrocatalysis (EC) and heterogeneous catalytic ozonation (HCO) process. Almost 100% of SDZ was removed within 2 min, and the TOC removal reached approximately 85% within 60 min. Quenching experiments and EPR analysis suggested that the prominent SDZ and TOC removal performance is supported by the enhanced ·OH generation ability. Further study proved that H2O2 formed by O2 electrochemical reduction, peroxone reaction and electrochemical reduction of ozone contributed to improving ·OH generation. Furthermore, the EHCO system showed satisfactory stability and recyclability compared to conventional HCO systems, and the SDZ and TOC removal rates were maintained at ≥95% and ≥70% in 16 consecutive recycles, respectively. Meanwhile, XPS analysis and Boehm's titration for the FeOx/PAC catalyst used in HCO and EHCO process confirmed that the external electron supply could restrain the oxidation of surface functional groups of PAC and maintain a balance of the Fe(II)/Fe(III) ratio, which proved the critical role of cathode reduction in catalyst in situ regeneration during long consecutive recycles. In addition, the EHCO system could achieve more than 80% SDZ removal within 2 min in different water matrices. These results confirmed that the EHCO process has a wide application perspective for refractory organics removal in actual wastewater.
Collapse
Affiliation(s)
- Xu Yin
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Jie Zhang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Siru Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Wei Li
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Hongwei Zhu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Weiqing Han
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| |
Collapse
|
4
|
Wei K, Wang L, Gu L, Liu Q, Li W, Zhou Z, Han W, Ouyang C, Zhang R, Huang X, Zhang X. 2D-Like Catalyst with a Micro-nanolinked Functional Surface for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3007-3018. [PMID: 38294954 DOI: 10.1021/acs.est.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In water purification, the performance of heterogeneous advanced oxidation processes significantly relies upon the utilization of the catalyst's specific surface area (SSA). However, the presence of the structural "dead volume" and pore-size-induced diffusion-reaction trade-off limitation restricts the functioning of the SSA. Here, we reported an effective approach to make the best SSA by changing the traditional 3D spherule catalyst into a 2D-like form and creating an in situ micro-nanolinked structure. Thus, a 2D-like catalyst was obtained which was characterized by a mini "paddy field" surface, and it exhibited a sharply decreased dead volume, a highly available SSA and oriented flexibility. Given its paddy-field-like mass-transfer routine, the organic capture capability was 7.5-fold higher than that of the catalyst with mesopores only. Moreover, such a catalyst exhibited a record-high O3-to-·OH transition rate of 2.86 × 10-8 compared with reported millimetric catalysts (metal base), which contributed to a 6.12-fold higher total organic removal per catalyst mass than traditional 3D catalysts. The facile scale preparation, performance stability, and significant material savings with the 2D-like catalyst were also beneficial for practical applications. Our findings provide a unique and general approach for designing potential catalysts with excellent performance in water purification.
Collapse
Affiliation(s)
- Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lu Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Liankai Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qiqing Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wei Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Zuoyong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Ren T, Ouyang C, Zhou Z, Chen S, Yin M, Huang X, Zhang X. Mn-doped carbon-Al 2SiO 5 fibers enable catalytic ozonation for wastewater treatment: Interface modulation and mass transfer enhancement. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132307. [PMID: 37647666 DOI: 10.1016/j.jhazmat.2023.132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Heterogeneous catalytic ozonation is an efficient approach to remove hazardous and refractory organic contaminants in wastewater. It is crucial to design an ozone catalyst with high catalytic activity, high mass transfer and facile separation properties. Herein, easily separable aluminosilicate (Al2SiO5) fibers were developed as carriers and after interface modulation, Mn-doped carbon-Al2SiO5 (Mn-CAS) fibrous catalysts were proposed for catalytic ozonation. The growth of carbon shells on Al2SiO5 fiber surface and the introduction of metal Mn provided abundant Lewis acid sites to catalyze ozone. The Mn-CAS fiber/O3 system exhibited superior reactivity to degrade oxalic acid with a rate constant of 0.034 min-1, which was about 19 times as high as Al2SiO5/O3. For coal gasification wastewater treatment, Mn-CAS fibers also demonstrated high catalytic activity and stability and the COD removal was over 56%. Computational fluid dynamic simulations proved the high mass transfer properties of fibrous catalysts. Hydroxyl radicals (•OH) were identified as the predominant active species for organic degradation. Particularly, the catalytic pathways of O3 to •OH on Mn-O4 sites were revealed by theoretical calculations. This work provides a novel fibrous catalyst with high reactivity and mass transfer as well as easy separation characteristics for catalytic ozonation and wastewater purification.
Collapse
Affiliation(s)
- Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuoyong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Kuspanov Z, Baglan B, Baimenov A, Issadykov A, Yeleuov M, Daulbayev C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163914. [PMID: 37149164 DOI: 10.1016/j.scitotenv.2023.163914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The growing environmental and energy crises have prompted researchers to seek new solutions, including large-scale photocatalytic environmental remediation and the production of solar hydrogen using photocatalytic materials. To achieve this goal, scientists have developed numerous photocatalysts with high efficiency and stability. However, the large-scale application of photocatalytic systems under real-world conditions is still limited. These limitations arise at every step, including the large-scale synthesis and deposition of photocatalyst particles on a solid support, and the development of an optimal design with high mass transfer and efficient photon absorption. The purpose of this article is to provide a detailed description of the primary challenges and potential solutions encountered in scaling up photocatalytic systems for use in large-scale water and air purification and solar hydrogen production. Additionally, based on a review of current pilot developments, we draw conclusions and make comparisons regarding the main operating parameters that affect performance, as well as propose strategies for future research.
Collapse
Affiliation(s)
- Zhengisbek Kuspanov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Bakbolat Baglan
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Alzhan Baimenov
- Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Aidos Issadykov
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Mukhtar Yeleuov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
| | - Chingis Daulbayev
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| |
Collapse
|
7
|
Ren T, Yin M, Chen S, Ouyang C, Huang X, Zhang X. Single-Atom Fe-N 4 Sites for Catalytic Ozonation to Selectively Induce a Nonradical Pathway toward Wastewater Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3623-3633. [PMID: 36790324 DOI: 10.1021/acs.est.2c07653] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonradical oxidation has been determined to be a promising pathway for the degradation of organic pollutants in heterogeneous catalytic ozonation (HCO). However, the bottlenecks are the rational design of catalysts to selectively induce nonradicals and the interpretation of detailed nonradical generation mechanisms. Herein, we propose a new HCO process based on single-atom iron catalysts, in which Fe-N4 sites anchored on the carbon skeleton exhibited outstanding catalytic ozonation activity and stability for the degradation of oxalic acid (OA) and p-hydroxybenzoic acid (pHBA) as well as the advanced treatment of a landfill leachate secondary effluent. Unlike traditional radical oxidation, nonradical pathways based on surface-adsorbed atomic oxygen (*Oad) and singlet oxygen (1O2) were identified. A substrate-dependent behavior was also observed. OA was adsorbed on the catalyst surface and mainly degraded by *Oad, while pHBA was mostly removed by O3 and 1O2 in the bulk solution. Density functional theory calculations and molecular dynamics simulations revealed that one terminal oxygen atom of ozone preferred bonding with the central iron atom of Fe-N4, subsequently inducing the cleavage of the O-O bond near the catalyst surface to produce *Oad and 1O2. These findings highlight the structural design of an ozone catalyst and an atomic-level understanding of the nonradical HCO process.
Collapse
Affiliation(s)
- Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
8
|
Song Y, Feng S, Qin W, Ma J. Mechanism of catalytic ozonation in expanded graphite aqueous suspension for the degradation of organic acids. ENVIRONMENTAL TECHNOLOGY 2023; 44:739-750. [PMID: 34534044 DOI: 10.1080/09593330.2021.1983024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, expanded graphite (EG) was prepared by the oxidation and intercalation of the natural flake graphite using perchloric acid and potassium permanganate at different expansion temperatures (300, 400, 500, and 600°C), and were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). EG prepared at 500°C was found to be highly effective for the mineralization of oxalic acid aqueous solution during ozonation at pH 3, which was ascribed to the formation of hydroxyl radicals from the surface reaction of surface hydroxyl groups on EG with ozone. The performance of expanded graphite in this catalytic system was basically unchanged after three repeated use. The presence of Cl-, SO42-, HPO42-/H2PO4- and NO3- could inhibit the degradation of oxalic acid in catalytic ozonation with EG. Degradations of oxamic acid and pyruvic acid in catalytic ozonation with EG were pH-dependent, which were lower than that of oxalic acid. The degradations of oxalic acid and oxamic acid were identified as mineralization process by the determination of TOC, while pyruvic acid may transform into organic products such as acetic acid by O3/EG. Manganese ion (Mn2+) could promote the degradation of oxalic acid by O3/EG at pH 3 because permanganate was produced by O3/EG in oxalic acid solution and then reacted with oxalic acid readily at acidic pH. Catalytic ozonation by EG exhibited great application potential for the destruction of refractory organic compounds.
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Sha Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
9
|
Ren T, Zhang X, Chen S, Huang X, Zhang X. Hydrogen peroxide and peroxymonosulfate intensifying Fe-doped NiC-Al 2O 3-framework-based catalytic ozonation for advanced treatment of landfill leachate: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156904. [PMID: 35753473 DOI: 10.1016/j.scitotenv.2022.156904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The biotreated effluent of landfill leachate still contains numerous refractory organic contaminants, which poses potential threats to human health and ecosystems. Influenced by landfill ages and other factors, the concentration of organic matter varies. Heterogeneous catalytic ozonation (HCO) is a promising technology for advanced wastewater treatment. Aiming to achieve the up-to-standard discharge of low-concentration landfill leachate (COD ≈ 108 mg·L-1) and improve the biodegradability of high-concentration landfill leachate (COD ≈ 1720 mg·L-1), the active component Fe was incorporated into a firm Ni-induced C-Al2O3-framework (NiCAF) composite support to synthesize a Fe-NiCAF catalyst for efficient catalytic ozonation. When the Fe-NiCAF dosage was 4 g·L-1, the gas flow rate was 0.5 L·min-1, and the ozone concentration was 20.0 mg·L-1, the COD of low-concentration landfill leachate effluent decreased to 43 mg·L-1, and the COD removal rate constant of low-concentration landfill leachate was 154% higher than that of pure ozone. For high-concentration landfill leachate with the BOD5/COD of 0.058, the COD removal efficiency in Fe-NiCAF/O3 increased from 39% to 57% compared with ozonation, and the effluent BOD5/COD increased to 0.282. Furthermore, the addition of hydrogen peroxide (H2O2) and peroxymonosulfate (PMS) can further enhance the treatment performance of Fe-NiCAF/O3 process and different strengthening mechanisms were revealed. The results indicated that surface hydroxyls on the Fe-NiCAF catalyst surface were the main catalytic sites for ozone, and hydroxyl radical (•OH) and singlet oxygen (1O2) were identified as the main reactive oxygen species for the removal of organics in landfill leachate. Adding H2O2 can promote the generation of •OH for nonselective degradation of various organics, while PMS mainly enhanced the production of 1O2 to decompose macromolecular humus. This work highlighted an efficient Fe-NiCAF ozone catalyst and an innovative peroxide intensified HCO strategy for the advanced treatment of landfill leachate.
Collapse
Affiliation(s)
- Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoying Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Nica AV, Olaru EA, Bradu C, Dumitru A, Avramescu SM. Catalytic Ozonation of Ibuprofen in Aqueous Media over Polyaniline-Derived Nitrogen Containing Carbon Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193468. [PMID: 36234595 PMCID: PMC9565786 DOI: 10.3390/nano12193468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 05/20/2023]
Abstract
Catalytic ozonation is an important water treatment method among advanced oxidation processes (AOPs). Since the first development, catalytic ozonation has been consistently improved in terms of catalysts used and the optimization of operational parameters. The aim of this work is to compare the catalytic activity of polyaniline (PANI) and thermally treated polyaniline (PANI 900) in the catalytic ozonation of ibuprofen solutions at different pH values (4, 7, and 10). Catalysts were thoroughly characterized through multiple techniques (SEM, Raman spectroscopy, XPS, pHPZC, and so on), while the oxidation process of ibuprofen solutions (100 mgL-1) was assessed by several analytical methods (HPLC, UV254, TOC, COD, and BOD5). The experimental data demonstrate a significant improvement in ibuprofen removal in the presence of prepared solids (20 min for PANI 900 at pH10) compared with non-catalytic processes (56 min at pH 10). Moreover, the influence of solution pH was emphasized, showing that, in the basic region, the removal rate of organic substrate is higher than in acidic or neutral range. Ozone consumption mgO3/mg ibuprofen was considerably reduced for catalytic processes (17.55-PANI, 11.18-PANI 900) compared with the absence of catalysts (29.64). Hence, beside the ibuprofen degradation, the catalysts used are very active in the mineralization of organic substrate and/or formation of biodegradable compounds. The best removal rate of target pollutants and oxidation by-products was achieved by PANI 900, although raw polyaniline also presents important activity in the oxidation process. Therefore, it can be stated that polyaniline-based catalysts are effective in the oxidation processes.
Collapse
Affiliation(s)
- Angel-Vasile Nica
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
| | - Elena Alina Olaru
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91–95, 050095 Bucharest, Romania
| | - Corina Bradu
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91–95, 050095 Bucharest, Romania
| | - Anca Dumitru
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
- Correspondence: (A.D.); (S.M.A.)
| | - Sorin Marius Avramescu
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania
- Correspondence: (A.D.); (S.M.A.)
| |
Collapse
|
11
|
Interfacial mechanism of the synergy of biochar adsorption and catalytic ozone micro-nano-bubbles for the removal of 2,4-dichlorophenoxyacetic acid in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wang Y, Yu G. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129157. [PMID: 35605501 DOI: 10.1016/j.jhazmat.2022.129157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Catalytic ozonation is a promising technology for pollutant abatement in water and wastewater treatment. However, there are many controversies and contradictions regarding the mechanisms of catalytic ozonation in literature, which has seriously confounded the development of the technology towards industrial applications. Herein, a critical review of literature is conducted to reveal possible underlying causes of the controversies and contradictions, and several common pitfalls in the experimental design and data interpretation are identified, e.g., the fundamentally flawed quenching method popularly used for evaluating the role of reactive oxygen species for pollutant abatement in catalytic ozonation and the neglect of monitoring ozone transfer doses in lab-scale experiments. Based on the identified pitfalls, several measures are suggested to improve the experimental design and data interpretation of catalytic ozonation studies. In addition, recent advances in mechanistic understanding of catalytic ozonation by principle-based modelling approaches are described. Finally, additional works that are needed to shrink the gap between academic research and practical applications and the prospect of catalytic ozonation in future water and wastewater treatment systems are analyzed.
Collapse
Affiliation(s)
- Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China
| |
Collapse
|
13
|
Enhancing Ozone Oxidation of Reverse Osmosis Concentrate Using Activated Carbon-Supported Cu–Co–Mn Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Ban Y. Purification of bathing wastewater by double suspended layer fluidized bed reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2375-2388. [PMID: 35486461 DOI: 10.2166/wst.2022.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An external radial magnetic field and built-in stainless steel balls formed a magnetic suspended layer (MSL), as observed in this study. Under the condition of crossflow inflow, the flocculating agent and coagulant aids form a flocculated particles suspension layer (FPSL). Thus a double suspended fluidized bed reactor was constructed to treat bathing wastewater. A particle image velocimetry device was used to detect flow patterns and analyze the flocculation conditions. The results showed that under the condition of crossflow inflow, at the same time, the flooding water was 0.023-2.101 m3/h, and the dosage of poly aluminum chloride (PAC) and polyacrylic amide (PAM) was 90 mg/L and 1.5 mg/L, respectively, and removal rates of turbidity, chemical oxygen demand (CODCr) and linear alkylbenzene sulphonates (LAS) reached more than 99, 90, and 80%. Filtration, grid flocculation and particle interception were functions of the MSL. Meanwhile, the crossflow input created additional vortexes, increasing the likelihood of flocculation particle collision, improving the flocculation conditions and cleaning the MSL. The reactor aids in the development of the initial flocculated particles suspension layer, flocculation strengthening, chemical dosage reduction, effluent qualities improvement, and effluent stability maintenance.
Collapse
Affiliation(s)
- YunXiao Ban
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China E-mail:
| |
Collapse
|
15
|
Ouyang C, Wei K, Huang X, Gamal El-Din M, Zhang X. Bifunctional Fe for Induced Graphitization and Catalytic Ozonation Based on a Fe/N-Doped Carbon-Al 2O 3 Framework: Theoretical Calculations Guided Catalyst Design and Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11236-11244. [PMID: 34270217 DOI: 10.1021/acs.est.1c00728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterogeneous catalytic ozonation is regarded as a feasible technology in advanced wastewater treatment. Catalytic performance, mass transfer, and mechanical strength are the key elements for large-scale applications of catalysts. To optimize those elements, Fe was selected for its dual role in graphitization and catalytic ozonation. A Fe/N-doped micron-scale carbon-Al2O3 framework (CAF) was designed and applied to a fluidized catalytic process for the treatment of secondary effluent from coal gasification. The chemical oxygen demand removal rate constant and the hydroxyl radical generation efficiency (Rct) of the Fe/N-doped CAF were 190% and 429% higher than those of pure ozone, respectively. Theoretical calculations revealed that higher Fe valence promoted ozone decomposition, which implied increasing FeIII content for further catalyst optimization. The rate constant and Rct with a higher FeIII-proportion catalyst were increased by 13% and 16%, respectively, compared to those with the lower one. Molecular dynamics and density functional theory calculations were performed to analyze the reaction kinetics qualitatively and quantitatively. The energy barrier corresponding to FeIII configuration was 1.32 kcal mol-1, 27% lower than that for FeII configuration. These theoretical calculations guided the catalyst optimization and provided a novel solution for designing ozonation catalysts. The Fe/N-doped CAF demonstrated a great potential for practical applications.
Collapse
Affiliation(s)
- Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kajia Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210095, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Cao Q, Sang L, Tu J, Xiao Y, Liu N, Wu L, Zhang J. Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor. CHEMOSPHERE 2021; 270:128621. [PMID: 33092824 DOI: 10.1016/j.chemosphere.2020.128621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Recently microreactor technology attracts attention due to the excellent multiphase mixing and enhanced mass transfer. Herein, a continuous ozonation system based on a micro-packed bed reactor (μPBR) was used to improve the dissolution rate of ozone and achieved a rapid and efficient degradation of refractory organic pollutants. The effects of liquid flow rate, gas flow rate, initial pH, initial O3 concentration and initial phenol concentration on the phenol and chemical oxygen demand (COD) removal efficiencies were also investigated. Experimental results showed that phenol and COD removal efficiencies under optimal conditions achieved 100.0% and 86.4%, respectively. Compared with large-scale reactors, the apparent reaction rate constant in μPBR increased by 1-2 orders of magnitude. In addition, some typical organic pollutants (including phenols, antibiotics and dyes) were treated by ozonation in μPBR. The removal efficiencies of these organic pollutants and COD achieved 100.0% and 70.2%-80.5% within 71 s, respectively. In this continuous treatment system, 100% of the unreacted ozone was converted to oxygen, which promoted the healthy development of aquatic ecosystems. Thus, this continuous system based on μPBR is a promising method in rapid and efficient treating refractory organic pollutants.
Collapse
Affiliation(s)
- Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Le Sang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiacheng Tu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Huang W, Zhu Y, Wang L, Lv W, Dong B, Zhou W. Reversible and irreversible membrane fouling in hollow-fiber UF membranes filtering surface water: effects of ozone/powdered activated carbon treatment. RSC Adv 2021; 11:10323-10335. [PMID: 35423518 PMCID: PMC8695710 DOI: 10.1039/d0ra09820e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/07/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigated the reversible and irreversible membrane fouling behavior of micro polluted water by ozone/powdered activated carbon (PAC)/ultrafiltration treatment. The results indicated that PAC mainly adsorbed low-molecular weight organics and reduced the irreversible fouling resistance in ultrafiltration, while there existed a threshold PAC dosage for total and reversible fouling resistance alleviation. Ozone at low doses exerted little effect on membrane fouling alleviation, while higher doses controlled total and reversible fouling by reducing macromolecular biopolymers and humic-like substances. Combined ozone and PAC pretreatment had greater effects on both reversible and irreversible fouling reduction than individual PAC and ozone treatment, demonstrating synergistic effects in the reduction of organic content in the feed water, including macromolecular biopolymers, humic-like, low-molecular weight neutral and building blocks. Backwashing and chemical cleaning analysis revealed that biopolymers and humic-like substances were the main organics that caused hydraulic reversible fouling, whereas low-molecular organics of building blocks and neutral, as well as humic-like substances were the main components that caused hydraulic irreversible fouling. Combined ozone and PAC treatment not only improved the backwashing efficiency but also reduced the membrane fouling during backwashing, as well as reversible and irreversible fouling. The cake layer formation and standard pore blocking were the major mechanisms for ultrafiltration membrane fouling, of which standard pore blocking exerted more important effects in the membrane fouling formation and alleviation by individual and combined PAC and ozone treatment. This study investigated the reversible and irreversible membrane fouling behavior of micro polluted water by ozone/powdered activated carbon (PAC)/ultrafiltration treatment.![]()
Collapse
Affiliation(s)
- Weiwei Huang
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences Shanghai 201403 China +86-21-62208660 +86-21-62208660.,School of Environmental Science and Engineering, Tongji University Shanghai 200092 China .,Shanghai Qingpu Modern Agriculture Park Shanghai 201403 China
| | - Yuanhong Zhu
- Shanghai Qingpu Modern Agriculture Park Shanghai 201403 China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Weiguang Lv
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences Shanghai 201403 China +86-21-62208660 +86-21-62208660
| | - Bingzhi Dong
- School of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Wenzong Zhou
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences Shanghai 201403 China +86-21-62208660 +86-21-62208660
| |
Collapse
|
18
|
Li C, Wang W, Guo X, Duan J. Fluidization characteristics of wide-size-distribution particles in a gas-solid fluidized bed reactor. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fluidization characteristics of wide-size-distribution particles in the gas-solid fluidized bed reactor are investigated by applying experiment and computational fluid dynamics (CFD) methods. In this study, three types of narrow-cut particles and two sets of wide-size-distribution particles are used. A model considering particle size distribution is developed in the Eulerian frame, and good agreement between numerical results and experimental data is observed. The particle size distribution has an important effect on the average bed voidage. The axial particle diameter profiles along bed height have a “S” type feature. Minimum fluidization velocity is determined from the standard deviation of pressure fluctuations and bubble dynamics are analyzed based on power spectra. Results indicate that fine particle composition can reduce the minimum fluidization velocity of wide-size-distribution particle system and the bubble diameter in the fluidized bed.
Collapse
Affiliation(s)
- Chaojie Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Weiwen Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Xiuling Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Jihai Duan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| |
Collapse
|