1
|
Tekanova E, Sidelev S, Kalinkina N, Chernova E, Barinova S, Sharov A, Smirnova V. Toxigenic Cyanobacteria and Microcystins in a Large Northern Oligotrophic Lake Onego, Russia. Toxins (Basel) 2024; 16:457. [PMID: 39591212 PMCID: PMC11598714 DOI: 10.3390/toxins16110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Toxigenic cyanobacteria and microcystins in the oligotrophic pelagic zone and mesotrophic bay of Lake Onego-the second largest lake in Europe-were found for the first time. Microscopic analysis revealed that Dolichospermum lemmermannii, D. circinale and D. spiroides dominated in bloom spots in the oligotrophic zone of the lake and D. flos-aquae and Microcystis aeruginosa OKin the eutrophic bay. The abundance of cyanobacteria in bloom spots is potentially hazardous for humans and animals. PCR-analysis showed that mcyA gene involved in microcystin biosynthesis was found in cyanobacteria of the genera Dolichospermum and Microcystis. Five structural variants of intracellular microcystins were detected in a trace amount using high-performance liquid chromatography-mass-spectrometry of high resolution. The most hazardous hepatotoxin, MC-LR, was found only in the eutrophic bay. In the present study, the reasons for the low cyanotoxin content in the phytoplankton dominated by Dolichospermum are discussed. The findings of our study make a significant contribution to the accumulation of facts which state that toxigenic cyanobacterial blooms can occur in large oligotrophic lakes.
Collapse
Affiliation(s)
- Elena Tekanova
- Karelian Research Center, Russian Academy of Sciences, 185030 Petrozavodsk, Russia; (E.T.); (S.S.); (N.K.); (V.S.)
| | - Sergey Sidelev
- Karelian Research Center, Russian Academy of Sciences, 185030 Petrozavodsk, Russia; (E.T.); (S.S.); (N.K.); (V.S.)
- Faculty of Biology and Ecology, P.G. Demidov Yaroslavl State University, 150057 Yaroslavl, Russia
| | - Nataliia Kalinkina
- Karelian Research Center, Russian Academy of Sciences, 185030 Petrozavodsk, Russia; (E.T.); (S.S.); (N.K.); (V.S.)
| | - Ekaterina Chernova
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, 197110 St. Petersburg, Russia;
| | - Sophia Barinova
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Andrey Sharov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Yaroslavl, Russia;
| | - Valeria Smirnova
- Karelian Research Center, Russian Academy of Sciences, 185030 Petrozavodsk, Russia; (E.T.); (S.S.); (N.K.); (V.S.)
| |
Collapse
|
2
|
Wang N, Mark N, Launer N, Hirtler A, Weston C, Cleckner L, Faehndrich C, LaGorga L, Xia L, Pyrek D, Penningroth SM, Richardson RE. Harmful algal blooms in Cayuga lake, NY: From microbiome analysis to eDNA monitoring. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120128. [PMID: 38382427 DOI: 10.1016/j.jenvman.2024.120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The global increase in harmful algal blooms (HABs) has become a growing concern over the years, and New York State (NYS) is no exception. The Finger Lakes region in NYS has been identified as a hotspot for HABs, with Cayuga Lake having the highest number of blooms reported. The Cayuga Lake HABs Monitoring Program has been tracking cHABs (dominant bloom taxa, chlorophyll A, and microcystin levels) since 2018. However, limited research has been conducted on the microbiome of HABs in this region. In this study, the microbiome of HABs in the Cayuga Lake was surveyed and compared with non-HAB baseline samples. Using 16S rDNA community analysis, common bloom-forming cyanobacteria, were identified, with Microcystis being the dominant taxa in high toxin blooms. Further, this study evaluated the ability of Microcystis mcyA qPCR to detect elevated levels of potential toxigenic Microcystis in water samples using both benchtop and handheld qPCR devices. The results showed good performance of the qPCR assay as a screening for high toxin versus low/no toxin blooms. Additionally, the handheld qPCR device holds potential for in-field rapid (<1 h) screenings for high toxin blooms. This study provides insights into the microbiome of HABs in Cayuga Lake and offers a potential tool for rapid screening of high toxin blooms.
Collapse
Affiliation(s)
- Nan Wang
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Noah Mark
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Nathaniel Launer
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Adrianna Hirtler
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Claire Weston
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Lisa Cleckner
- Finger Lakes Institute, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Chloe Faehndrich
- Skidmore College, Environmental Studies and Sciences Program, Saratoga Springs, NY, 12866, USA
| | - Lydia LaGorga
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lingzi Xia
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Pyrek
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Stephen M Penningroth
- Community Science Institute, New York State Department of Health-Environmental Laboratory Approval Program ID 11790, Ithaca, NY 14850, USA
| | - Ruth E Richardson
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Wu L, Zhang L, Yuan L, Liao Q, Xiang J, Zhang D, Qiu T, Liu J, Guo J. Spatio-temporal variation of toxin-producing gene abundance in Microcystis aeruginosa from Poyang Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2930-2943. [PMID: 38079038 DOI: 10.1007/s11356-023-31284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Microcystis aeruginosa (M. aeruginosa) causes massive blooms in eutrophic freshwater and releases microcystin. Poyang Lake is the largest freshwater lake in China and has kept a mid-nutrient level in recent years. However, there is little research on microcystin production in Poyang Lake. In this study, water and sediment samples from ten sampling sites in Poyang Lake were collected from May to December in 2020, and from January to April in 2021 respectively. Microcystis genes (mcyA, mcyB, 16 s rDNA) were quantified by real-time fluorescence quantitative PCR analysis, and then the spatial and temporal variation of mcy genes, physicochemical factors, and bacterial population structure in the lake was analyzed. The relationship between the abundance of mcy genes and physicochemical factors in water column was also revealed. Results indicated that the microcystin-producing genes mcyA and mcyB showed significant differences in spatial and temporal levels as well, which is closely related to the physicochemical factors especially the water temperature (p < 0.05) and the nitrogen content (p < 0.05). The abundance of mcy genes in the sediment in December affected the abundance of mcy genes in the water column in the next year, while the toxic Microcystis would accumulate in the sediment. In addition to the toxic Microcystis, we also found a large number of non-toxic Microcystis in the water column and sediment, and the ratio of toxic to non-toxic species can also affect the toxicity production of M. aeruginosa. Overall, the results showed that M. aeruginosa toxin-producing genes in Poyang Lake distributed spatially and temporally which related to the physicochemical factors of Poyang Lake.
Collapse
Affiliation(s)
- Lin Wu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Lijuan Yuan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Qiegen Liao
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Jianjun Xiang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Dawen Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China.
| | - Tong Qiu
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Jutao Liu
- Jiangxi Provincial Institute of Water Sciences, Nanchang, 330200, Jiangxi, China
| | - Junhui Guo
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Villanueva P, Yang J, Radmer L, Liang X, Leung T, Ikuma K, Swanner ED, Howe A, Lee J. One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20636-20646. [PMID: 38011382 DOI: 10.1021/acs.est.3c07764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR- 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR- 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
Collapse
Affiliation(s)
- Paul Villanueva
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lorien Radmer
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xuewei Liang
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Tania Leung
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jaejin Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Gabyshev VA, Sidelev SI, Chernova EN, Vilnet AA, Davydov DA, Barinova S, Gabysheva OI, Zhakovskaya ZA, Voronov IV. Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia). Toxins (Basel) 2023; 15:467. [PMID: 37505736 PMCID: PMC10467126 DOI: 10.3390/toxins15070467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to test the hypothesis of the year-round presence of toxigenic Microcystis and cyanotoxins in the water and ice of the shallow eutrophic Lake Ytyk-Kyuyol located in the continuous permafrost zone. Three independent approaches-mass-spectrometry, molecular methods and light microscopy-were applied in the study. The cyanobacterial biomass ranged from 1.0 × 10-4 to 4.8 mg L-1. Microcystis flos-aquae and M. aeruginosa were the dominant morphospecies in plankton throughout the observation. In environmental DNA, the presence of M. aeruginosa was supported and mcy gene regions responsible for microcystin biosynthesis were detected through a BLAST (Basic Local Alignment Search Tool) search and phylogenetic estimation based on newly obtained 16S rRNA, 16S-23S ITS rRNA, mcyA and mcyE nucleotide sequences. The intracellular microcystin concentration ranged from <0.1 to 803 ng L-1, and the microcystin quota in the Microcystis biomass was extremely low. For the first time, it was shown that Microcystis cells containing mcy genes and microcystins presented permanently in the water column, both during the ice-free period and under ice, as well as inside thick ice covers within 7 months of severe winter. We hypothesized that minor pelagic and ice populations of Microcystis could participate in increasing cell density in the spring. However, further studies are needed to confirm the viability of the overwintering Microcystis colonies in the water and inside the ice of Lake Ytyk-Kyuyol.
Collapse
Affiliation(s)
- Viktor A. Gabyshev
- Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences, Yakutsk 677980, Russia; (V.A.G.); (O.I.G.); (I.V.V.)
| | - Sergey I. Sidelev
- Faculty of Biology and Ecology, Yaroslavl State University, Yaroslavl 150057, Russia;
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl 152742, Russia
| | - Ekaterina N. Chernova
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (E.N.C.); (Z.A.Z.)
| | - Anna A. Vilnet
- Polar-Alpine Botanic Garden-Institute—Subdivision of the Federal Research Centre “Kola Science Centre”, Apatity 184209, Russia; (A.A.V.); (D.A.D.)
| | - Denis A. Davydov
- Polar-Alpine Botanic Garden-Institute—Subdivision of the Federal Research Centre “Kola Science Centre”, Apatity 184209, Russia; (A.A.V.); (D.A.D.)
- Institute of North Industrial Ecology Problems—Subdivision of the Federal Research Center “Kola Science Center”, Apatity 184209, Russia
| | - Sophia Barinova
- Institute of Evolution, University of Haifa, Mount Carmel, 199 Abba Khoushi Ave., Haifa 3498838, Israel
| | - Olga I. Gabysheva
- Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences, Yakutsk 677980, Russia; (V.A.G.); (O.I.G.); (I.V.V.)
| | - Zoya A. Zhakovskaya
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (E.N.C.); (Z.A.Z.)
| | - Ivan V. Voronov
- Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences, Yakutsk 677980, Russia; (V.A.G.); (O.I.G.); (I.V.V.)
| |
Collapse
|
6
|
Wu S, Ji X, Li X, Ye J, Xu W, Wang R, Hou M. Mutual impacts and interactions of antibiotic resistance genes, microcystin synthetase genes, graphene oxide, and Microcystis aeruginosa in synthetic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3994-4007. [PMID: 34402007 DOI: 10.1007/s11356-021-15627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The physiological impacts and interactions of antibiotic resistance gene (ARG) abundance, microcystin synthetase gene expression, graphene oxide (GO), and Microcystis aeruginosa in synthetic wastewater were investigated. The results demonstrated that the absolute abundance of sul1, sul2, tetW, and tetM in synthetic wastewater dramatically increased to 365.2%, 427.1%, 375.2%, and 231.7%, respectively, when the GO concentration was 0.01 mg/L. Even more interesting is that the sum gene copy numbers of mcyA-J also increased to 243.2%. The appearance of GO made the significant correlation exist between ARGs abundance and mcyA-J expression. Furthermore, M. aeruginosa displayed better photosynthetic performance and more MCs production at 0.01 mg/L GO. There were 65 pairs of positive correlations between the intracellular differential metabolites of M. aeruginosa and the abundance of sul1, sul2, tetM, and tetW with various GO concentrations. The GO will impact the metabolites and metabolic pathway in M. aeruginosa. The metabolic changes impacted the ARGs, microcystin synthetase genes, and physiological characters in algal cells. Furthermore, there were complex correlations among sul1, sul2, tetM, tetW, mcyA-J, MCs, photosynthetic performance parameters, and ROS. The different concentration of GO will aggravate the hazards of M. aeruginosa by promoting the expression of mcyA-J, producing more MCs; simultaneously, it may cause the spread of ARGs.
Collapse
Affiliation(s)
- Shichao Wu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Rui Wang
- Shanghai Luming Biological Technology Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
7
|
MetaFunPrimer: an Environment-Specific, High-Throughput Primer Design Tool for Improved Quantification of Target Genes. mSystems 2021; 6:e0020121. [PMID: 34546069 PMCID: PMC8547451 DOI: 10.1128/msystems.00201-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genes belonging to the same functional group may include numerous and variable gene sequences, making characterizing and quantifying difficult. Therefore, high-throughput design tools are needed to simultaneously create primers for improved quantification of target genes. We developed MetaFunPrimer, a bioinformatic pipeline, to design primers for numerous genes of interest. This tool also enables gene target prioritization based on ranking the presence of genes in user-defined references, such as environment-specific metagenomes. Given inputs of protein and nucleotide sequences for gene targets of interest and an accompanying set of reference metagenomes or genomes, MetaFunPrimer generates primers for ranked genes of interest. To demonstrate the usage and benefits of MetaFunPrimer, a total of 78 primer pairs were designed to target observed ammonia monooxygenase subunit A (amoA) genes of ammonia-oxidizing bacteria (AOB) in 1,550 publicly available soil metagenomes. We demonstrate computationally that these amoA-AOB primers can cover 94% of the amoA-AOB genes observed in the 1,550 soil metagenomes compared with a 49% estimated coverage by previously published primers. Finally, we verified the utility of these primer sets in incubation experiments that used long-term nitrogen fertilized or unfertilized soils. High-throughput quantitative PCR (qPCR) results and statistical analyses showed significant differences in relative quantification patterns between the two soils, and subsequent absolute quantifications also confirmed that target genes enumerated by six selected primer pairs were significantly more abundant in the nitrogen-fertilized soils. This new tool gives microbial ecologists a new approach to assess functional gene abundance and related microbial community dynamics quickly and affordably. IMPORTANCE Amplification-based gene characterization allows for sensitive and specific quantification of functional genes. There is often a large diversity of genes represented for functional gene groups, and multiple primers may be necessary to target associated genes. Current primer design tools are limited to designing primers for only a few genes of interest. MetaFunPrimer allows for high-throughput primer design for various genes of interest and also allows for ranking gene targets by their presence and abundance in environmental data sets. Primers designed by this tool improve the characterization and quantification of functional genes in broad gene amplification platforms and can be powerful with high-throughput qPCR approaches.
Collapse
|
8
|
Naknaen A, Ratsameepakai W, Suttinun O, Sukpondma Y, Khan E, Pomwised R. Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand. Toxins (Basel) 2021; 13:toxins13090631. [PMID: 34564635 PMCID: PMC8472854 DOI: 10.3390/toxins13090631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content were 0.2-0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was 0.37-0.49 µg/mL. The concentration of soluble EPS (sEPS) was 2 times higher than that of bound EPS (bEPS). The protein proportion in both sEPS and bEPS was higher than the carbohydrate proportion. The average of intracellular microcystins (IMCs) was 0.47 pg/cell on day 15 of culturing, while extracellular microcystins (EMCs) were undetectable. The IMCs were dramatically produced at the exponential phase, followed by EMCs release at the late exponential phase. On day 30, the total microcystins (MCs) production reached 2.67 pg/cell. Based on liquid chromatograph-quadrupole time-of-flight mass spectrometry, three new MCs variants were proposed. This study is the first report of both decarbamoylsaxitoxin (dcSTX) and new MCs congeners synthesized by Microcystis.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand; (A.N.); (O.S.)
| | - Waraporn Ratsameepakai
- Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand; (A.N.); (O.S.)
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Yaowapa Sukpondma
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154-4015, USA;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: ; Tel.: +66-74-288-325
| |
Collapse
|
9
|
Durán-Vinet B, Araya-Castro K, Chao TC, Wood SA, Gallardo V, Godoy K, Abanto M. Potential applications of CRISPR/Cas for next-generation biomonitoring of harmful algae blooms: A review. HARMFUL ALGAE 2021; 103:102027. [PMID: 33980455 DOI: 10.1016/j.hal.2021.102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Research on harmful algal and cyanobacterial blooms (HABs and CHABs) has risen dramatically due to their increasing global distribution, frequency, and intensity. These blooms jeopardize public health, ecosystem function, sustainability and can have negative economic impacts. Numerous monitoring programs have been established using light microscopy, liquid chromatography coupled to mass spectrometry (LC-MS), ELISA, and spectrophotometry to monitor HABs/CHABs outbreaks. Recently, DNA/RNA-based molecular methods have been integrated into these programs to replace or complement traditional methods through analyzing environmental DNA and RNA (eDNA/eRNA) with techniques such as quantitative polymerase chain reaction (qPCR), fluorescent in situ hybridization (FISH), sandwich hybridization assay (SHA), isothermal amplification methods, and microarrays. These have enabled the detection of rare or cryptic species, enhanced sample throughput, and reduced costs and the need for visual taxonomic expertise. However, these methods have limitations, such as the need for high capital investment in equipment or detection uncertainties, including determining whether organisms are viable. In this review, we discuss the potential of newly developed molecular diagnosis technology based on Clustered Regularly Interspaced Short Palindromic Repeats/Cas proteins (CRISPR/Cas), which utilizes the prokaryotic adaptative immune systems of bacteria and archaea. Cas12 and Cas13-based platforms can detect both DNA and RNA with attomolar sensitivity within an hour. CRISPR/Cas diagnostic is a rapid, inexpensive, specific, and ultrasensitive technology that, with some further development, will provide many new platforms that can be used for HABs/CHABs biomonitoring and research.
Collapse
Affiliation(s)
- B Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile; Bachelor of Biotechnology (Honours) Program, Faculty of Agricultural and Forestry Sciences, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile.
| | - K Araya-Castro
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - T C Chao
- Institute of Environmental Change & Society, Department of Biology, University of Regina, Wascana Parkway, 3737 Regina, Canada
| | - S A Wood
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - V Gallardo
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile; Bachelor of Biotechnology (Honours) Program, Faculty of Agricultural and Forestry Sciences, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - K Godoy
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Microscopy and Flow Cytometry Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - M Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| |
Collapse
|
10
|
Zeng YH, Cai ZH, Zhu JM, Du XP, Zhou J. Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. WATER RESEARCH 2020; 183:116092. [PMID: 32622230 DOI: 10.1016/j.watres.2020.116092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are the most common cyanotoxins produced by harmful cyanobacterial blooms and pose an increasing global threat to human health and ecosystems. Microbial degradation represents an efficient and sustainable approach for the removal of MCs. Although the enzymatic pathway for biodegradation of MCs has been characterized, the regulatory mechanisms underlying the degradation processes remain unclear. Quorum sensing (QS) is a cell-density-dependent regulatory mechanism that enables bacteria to orchestrate collective behaviors. The acyl-homoserine lactone (AHL)-mediated QS system regulates the biodegradation of many organic pollutants. However, it is not known whether this QS system is involved in the degradation of MCs. This study aimed to fill this knowledge gap. In this study, the proportion of culturable AHL-producers increased significantly after enrichment of MCs, and AHL-based QS systems were present in all genome-sequenced MC-degrading strains, supporting the hypothesis that QS participates in the degradation of MCs. Two bifunctional Novosphingobium strains (with MC-degrading and AHL-producing abilities) were isolated using a novel primer pair targeting mlrA, the marker gene of mlr degradation pathway. Biochemical and genetic analysis revealed that the MC-degrading bacterium Novosphingobium sp. ERW19 encodes two hierarchical regulatory QS systems designated novR1/novI1 and novR2/novI2. Gene knockout and complementation experiments indicated that both systems were required for efficient degradation of MCs. Transcriptomic analyses revealed that the QS systems positively regulate degradation of MCs through transcriptional activation of MC-degrading genes, especially mlrA. Given that QS may be a common trait within mlr pathway-dependent MC-degrading bacterial strains and the degradation activity is directly regulated by QS, manipulation of the QS systems may be a promising strategy to control biodegradation of MCs.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|