1
|
Chi T, Liu Z, Zhang B, Zhu L, Dong C, Li H, Jin Y, Zhu L, Hu B. Fluoranthene slow down sulfamethazine migration in soil via π-π interaction to increase the abundance of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124532. [PMID: 38996991 DOI: 10.1016/j.envpol.2024.124532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.
Collapse
Affiliation(s)
- Taolve Chi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Baofeng Zhang
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, China.
| | - Lin Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Chifei Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Haofei Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
2
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2024:10.1038/s41579-024-01098-y. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Yang JQ. Solute flow and particle transport in aquatic ecosystems: A review on the effect of emergent and rigid vegetation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100429. [PMID: 38860122 PMCID: PMC11163177 DOI: 10.1016/j.ese.2024.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
In-channel vegetation is ubiquitous in aquatic environments and plays a critical role in the fate and transport of solutes and particles in aquatic ecosystems. Recent studies have advanced our understanding of the role of vegetation in solute flow and particle transport in aquatic ecosystems. This review summarizes these papers and discusses the impacts of emergent and rigid vegetation on the surface flow, the advection and dispersion of solutes, suspended load transport, bedload transport, and hyporheic exchange. The two competing effects of emergent vegetation on the above transport processes are discussed. On the one hand, emergent vegetation reduces mean flow velocity at the same surface slope, which reduces mass transport. On the other hand, at the same mean flow velocity, vegetation generates turbulence, which enhances mass transport. Mechanistic understanding of these two competing effects and predictive equations derived from laboratory experiments are discussed. Predictive equations for the mean flow velocity and turbulent kinetic energy inside an emergent vegetation canopy are derived based on force and energy balance. The impacts of emergent vegetation on the advection-dispersion process, the suspended load and bedload transport, and the hyporheic exchange are summarized. The impacts of other vegetation-related factors, such as vegetation morphology, submergence, and flexibility, are briefly discussed. The role of vegetation in transporting other particles, such as micro- and macro-plastics, is also briefly discussed. Finally, suggestions for future research directions are proposed to advance the understanding of the dynamic interplays among natural vegetation, flow dynamics, and sedimentary processes.
Collapse
Affiliation(s)
- Judy Q. Yang
- St. Anthony Falls Laboratory, Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin Cities, MN, USA
| |
Collapse
|
4
|
Oprei A, Schreckinger J, Franzmann I, Lee H, Mutz M, Risse-Buhl U. Light over mechanics: microbial community structure and activity in simulated migrating bedforms are controlled by oscillating light rather than by mechanical forces. FEMS Microbiol Ecol 2024; 100:fiae073. [PMID: 38702847 PMCID: PMC11110858 DOI: 10.1093/femsec/fiae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment-associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by (1) higher compared to lower migration velocities, and by (2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift toward heterotrophy.
Collapse
Affiliation(s)
- Anna Oprei
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489 Berlin, Germany
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - José Schreckinger
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
- RPTU Kaiserslautern-Landau, Institute of Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
| | - Insa Franzmann
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Hayoung Lee
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Michael Mutz
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Ute Risse-Buhl
- RPTU Kaiserslautern-Landau, Institute of Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
- RPTU Kaiserslautern-Landau, Ecology, Department of Biolology, Erwin-Schroedinger-Str. 14, 67663 Kaiserslautern, Germany
- Helmholtz Centre for Environmental Research (UFZ), Department of River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| |
Collapse
|
5
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
6
|
Zhang J, Huang L, Wang Y. Changes in the level of biofilm development significantly affect the persistence of environmental DNA in flowing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170162. [PMID: 38244634 DOI: 10.1016/j.scitotenv.2024.170162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As one of the powerful tools of species biomonitoring, the utilization of environmental DNA (eDNA) technology is progressively expanding in both scope and frequency within the field of ecology. Nonetheless, the growing dissemination of this technology has brought to light a multitude of intricate issues. The complex effects of environmental factors on the persistence of eDNA in water have brought many challenges to the interpretation of eDNA information. In this study, the primary objective was to examine how variations in the presence and development of biofilms impact the persistence of grass carp eDNA under different sediment types and flow conditions. This investigation encompassed the processes of eDNA removal and resuspension in water, shedding light on the complex interactions involved. The findings reveal that with an elevated biofilm development level, the total removal rate of eDNA gradually rose, resulting in a corresponding decrease in its residence time within the mesocosms. The influence of biofilms on the persistence of grass carp eDNA is more pronounced under flowing water conditions. However, changes in bottom sediment types did not significantly interact with biofilms. Lastly, in treatments involving alternating flow conditions between flowing and still water, significant resuspension of grass carp eDNA was not observed due to interference from multiple factors, including the effect of biofilms. Our study offers preliminary insights into the biofilm-mediated mechanisms of aquatic eDNA removal, emphasizing the need for careful consideration of environmental factors in the practical application of eDNA technology for biomonitoring in natural aquatic environments.
Collapse
Affiliation(s)
- Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| | - Lei Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| | - Yurong Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| |
Collapse
|
7
|
Pesce S, Mamy L, Sanchez W, Artigas J, Bérard A, Betoulle S, Chaumot A, Coutellec MA, Crouzet O, Faburé J, Hedde M, Leboulanger C, Margoum C, Martin-Laurent F, Morin S, Mougin C, Munaron D, Nélieu S, Pelosi C, Leenhardt S. The use of copper as plant protection product contributes to environmental contamination and resulting impacts on terrestrial and aquatic biodiversity and ecosystem functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32145-z. [PMID: 38324154 DOI: 10.1007/s11356-024-32145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.
Collapse
Affiliation(s)
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Et Environnement (LMGE), 63000, Clermont-Ferrand, France
| | - Annette Bérard
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, 51100, Reims, France
| | | | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro-Agrocampus Ouest, IFREMER, Rennes, France
| | - Olivier Crouzet
- OFB, Direction Recherche Et Appui Scientifique, Service Santé-Agri, 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | | | | | - Fabrice Martin-Laurent
- Agroécologie, Institut Agro, INRAE, Université Bourgogne-Franche-Comté, 21110, Dijon, France
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Sophie Leenhardt
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, 75338, Paris, France
| |
Collapse
|
8
|
Zhang J, Xu Z, Chu W, Ju F, Jin W, Li P, Xiao R. Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. WATER RESEARCH 2023; 245:120635. [PMID: 37738943 DOI: 10.1016/j.watres.2023.120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; College of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan, Shandong 250100, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Schindler R, Whitehouse R, Harris J. Sticky stuff: biological cohesion for scour and erosion prevention. ENVIRONMENTAL TECHNOLOGY 2023; 44:3161-3175. [PMID: 35392768 DOI: 10.1080/09593330.2022.2052362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study examines the potential for biological cohesion to arrest scour erosion at marine infrastructure. Biological cohesion occurs naturally in sedimentary environments, and is caused by extracellular polymeric substances (EPS) which result from the life cycles of microorganisms. EPS is known to dramatically increase the resistance of natural biomediated sediment to erosive hydrodynamic forces. In this study, we test, for the first time, whether EPS can be deliberately added to a sediment to mitigate against scour erosion - a process we term 'biostabilisation'. A systematic laboratory experiment is used to investigate the effects of an EPS additive on scour erosion around a monopile in a sand substrate. Results show that increasing EPS content causes a progressive reduction in equilibrium scour depth, the volume of excavated material and the timescale required to reach equilibrium scour morphology. These parameters are linearly related to EPS content, showing that the effects of EPS on the physical processes required for erosion to occur are concentration dependent. It can be concluded that biostabilisation offers a potential new ecologically engineered, nature-based solution to a range of scour and erosion scenarios. The economic and environmental advantages are discussed, and a methodology for biostabilisation use in individual erosion mitigation scenarios is proposed.
Collapse
Affiliation(s)
- Rob Schindler
- School of Geography, Earth & Environmental Science, University of Plymouth, Plymouth, UK
| | | | - John Harris
- Coasts & Oceans, HR Wallingford, Howbery Park, Wallingford, UK
| |
Collapse
|
10
|
Pan M, Li H, Han X, Quan G, Ma W, Guo Q, Li X, Yang B, Ding C, Chen Y, Yun T, Qin J, Jiang S. Effect of hydrodynamics on the transformation of nitrogen in river water by regulating the mass transfer performance of dissolved oxygen in biofilm. CHEMOSPHERE 2023; 312:137013. [PMID: 36397302 DOI: 10.1016/j.chemosphere.2022.137013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Biofilms drive crucial ecosystem processes in rivers. This study provided the basis for overall quantitative calculations about the contribution of biofilms to the nitrogen cycle. At the early stage of biofilm formation, dissolved oxygen (DO) could penetrate the biofilms. As the biofilm grew and the thickness increased, then the mass transfer of DO was restricted. The microaerobic layer firstly appeared in biofilm under the turbulent flow conditions, with the appearance of the microaerobic and anaerobic layer, the nitrification and denitrification reaction could proceed smoothly in biofilm. And the removal efficiency of total nitrogen (TN) increased as the biofilm matured. Under the turbulent flow conditions, mature biofilms had the smallest thickness, but the highest proportion the anaerobic layer to the biofilm thickness, the highest density, and the highest nitrogen removal efficiency. However, the nitrogen removal efficiency of biofilm was the lowest under laminar flow conditions. The difference of layered structure of biofilm and the DO flux in biofilm explained the difference of nitrogen migration and transformation in river water under different hydrodynamic conditions. This study would help control the growth of biofilm and improve the nitrogen removal capacity of biofilm by regulating hydrodynamic conditions.
Collapse
Affiliation(s)
- Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Haizong Li
- Yancheng Environmental Monitoring Center, Yancheng, 224002, PR China
| | - Xiangyun Han
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Guixiang Quan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Weixing Ma
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qingyuan Guo
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xuan Li
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Bairen Yang
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Cheng Ding
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Yuxi Chen
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Tao Yun
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jiaojiao Qin
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Siyi Jiang
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| |
Collapse
|
11
|
Hamani V, Brenon I, Coulombier T, Huguet JR, Murillo L. The forgotten ones of ports: The filter feeders at the heart of siltation processes. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105843. [PMID: 36512864 DOI: 10.1016/j.marenvres.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Siltation is a major concern in dynamic and complex ecosystems, such as ports. The mud must be regularly dredged to avoid disturbing the navigation channels. Sediments are carried by the waters entering the port and are partially trapped by harbour structures. Numerous studies have been conducted on the physical factors influencing siltation in port areas, whereas, few have focused on the role of biotic factors in mud formation. However, research in other contexts has shown that organisms that are abundant in pontoons, such as bivalves and tunicates, play an important role in this siltation process. All of these organisms belong to the filter feeder group. The sediments sucked in by the filter feeders are excreted in the form of faeces or mucus-bound pseudo-faeces. These waste materials, called bioproducts, settle efficiently and are involved in the composition of the mud. This study aimed to highlight the role of filter feeders in the siltation process in port areas and to determine the factors that influence the production of bioproducts by filter feeders. To investigate the role of filter feeders in the siltation processes, an experimental analysis was conducted in the largest marina in Europe (La Rochelle, France). It is divided into four basins with distinct filter feeder communities and environmental conditions, allowing for a detailed study of the environmental factors that influence the production of bioproducts. This analysis consisted of recovering and studying the bioproducts generated by the filter feeders using sediment traps fixed under pontoons. To explore the evolution of this biological production, 16 campaigns were conducted from January to March 2020 and May to July 2020. The total amount of dry matter produced was constant between seasons at approximately 130 g/m2/d; marina-wide, this amount represents a total daily production of 3.2 tons. However, the production amount varies spatially and temporally in relation to marine hydrodynamics and the organisms involved. Bioproduction was taxon-dependent: areas abundant in oysters and mussels were the areas with the most pronounced bioproduction, whereas there was no significant relationship between bioproduction and the presence of tunicates or scallops. If we consider bioproduction on a seasonal scale, we can see that the campaigns with the greatest production correspond to the periods when the sediment supply was the highest, i.e. when the tidal range was the highest. The quality of the bioproducts (organic matter content) differed between seasons, which can be explained by both environmental and metabolic changes. Understanding the role of filter feeders in siltation processes appears to be essential in port environments that need to be regularly dredged to ensure safe navigation.
Collapse
Affiliation(s)
- Vincent Hamani
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Isabelle Brenon
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Thibault Coulombier
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jean-Remy Huguet
- SAS Benoit Waeles-Consultant Génie Côtier, 53 Rue du Commandant Groix, 29200, Brest, France
| | - Laurence Murillo
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
12
|
Zhang H, Ge Z, Li Y, Huang S, Zhang J, Zheng Z. Response of submerged macrophytes and leaf biofilms to different concentrations of oxytetracycline and sulfadiazine. CHEMOSPHERE 2022; 308:136098. [PMID: 35995188 DOI: 10.1016/j.chemosphere.2022.136098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Oxytetracycline and sulfadiazine were widely used and they entered the environment through various channels such as domestic sewage, medical wastewater and agricultural wastewater, causing significant ecological risk. To determine the effects of different antibiotic concentrations on submerged macrophytes, Vallisneria natans was exposed to solutions containing different concentrations of oxytetracycline and sulfadiazine (0.1 mg/L、1 mg/L、10 mg/L、50 mg/L). After 20-days exposure, we found that 10 mg/L groups had a significant effect on Vallisneria natans. Under high antibiotic concentrations, the growth of Vallisneria natans was inhibited, chloroplasts were deformed, the chlorophyll content was reduced, and antioxidant enzyme activities, such as superoxide dismutase and glutathione, were increased. There was no significant difference between the control group and groups with low antibiotic concentrations (≤1 mg/L). The N-acyl-l-homoserine lactone concentration tended to increase with increasing antibiotic concentrations. The presence of antibiotics also affected the microbial community structure of biofilms on the submerged macrophytes. For example, the higher the concentration of antibiotics, the higher the proportion of Proteobacteria. These results suggest that high concentrations of oxytetracycline and sulfadiazine can disrupt homeostasis, induce effective Vallisneria natans defense mechanisms and alter biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Hao Zhang
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zuhan Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yaguang Li
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
13
|
The Biosorption of Copper(II) Using a Natural Biofilm Formed on the Stones from the Metro River, Malang City, Indonesia. Int J Microbiol 2022; 2022:9975333. [PMID: 36204461 PMCID: PMC9532089 DOI: 10.1155/2022/9975333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Biofilm is the predominant habitat of microbes in aquatic ecosystems. Microhabitat inside the biofilm matrix is a nutrient-rich environment promoted by the adsorption of nutrient ions from the surrounding water. Biofilms can not only adsorb ions that are nutrients but also other ions, such as heavy metals. The ability of biofilm to attract and retain heavy metals, such as copper(II), makes biofilms a promising biosorbent for water pollution treatment. The present study analyzes the characteristics of copper(II) adsorption by biofilms naturally formed in the river. The biofilms used in this study grow naturally on the stones in the Metro River in Malang City, Indonesia. Methods to analyze the adsorption characteristics of copper(II) by biofilms were kinetics of the adsorption and adsorption isotherm. The maximum adsorption amount and the adsorption equilibrium constant were calculated using a variant of the Langmuir isotherm model. In addition, the presence of the functional groups as suggested binding sites in biofilm polymers was investigated using the Fourier transform infrared (FTIR) analysis. The results indicate that copper(II)’s adsorption to the biofilm is a physicochemical process. The adsorption of copper(II) is fitted well with the Langmuir isotherm model, suggesting that the adsorption of copper(II) to a biofilm is due to the interaction between the adsorption sites on the biofilm and the ions. The biofilm’s maximum absorption capacity for copper(II) is calculated to be 2.14 mg/wet-g of biofilm, with the equilibrium rate constant at 0.05 L/mg. Therefore, the biofilms on the stones from river can be a promising biosorbent of copper(II) pollution in aquatic ecosystems.
Collapse
|
14
|
Hou J, Shao G, Adyel TM, Li C, Liu Z, Liu S, Miao L. Can the carbon metabolic activity of biofilm be regulated by the hydrodynamic conditions in urban rivers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155082. [PMID: 35398435 DOI: 10.1016/j.scitotenv.2022.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Hydrodynamic regulation is widely used to improve the water quality of urban rivers. However, it is yet to explore substantially whether hydrodynamics could regulate the metabolic activity of biofilm in such aquatic systems. Herein, the pilot experiment of hydrodynamics in the rotation tanks was designed, including two experiment phases, namely constant flow and adjusting flow for 21 days and 14 days, respectively. In constant flow phase, biofilms grew in five shear stress gradients (R1-R5, 0.0044- 0.12 Pa). The carbon metabolic rate (k) of mature biofilms evaluated by BIOLOG ECO microplates showed a hump-shaped relationship with increasing shear stress, with R3 (0.049 Pa) the highest, while R5 (0.12 Pa) the lowest. To verify whether the metabolic activity of biofilm cultured at constant flow phase can be regulated by shear stress, we initiated the adjusting flow phase, and shear stress in reactors was reset uniformly at 0.049 Pa (with the highest k). Results showed the carbon metabolic activity of biofilm in reactor R4 and R5 increased rapidly by day 3, and there was no significant difference between the carbon metabolic rates among the five treatments by day 14. Meanwhile, the utilization levels of polymers and carbohydrates by biofilms were significantly different among the five treatments after hydrodynamic regulations. These results suggested that the total carbon metabolic activity of biofilm can be regulated by hydrodynamics, while the divergent changes of the specific carbon source category might affect the biofilm-mediated carbon biogeochemical processes, which should be considered for the application of hydrodynamic regulation in river ecological restoration projects.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoyi Shao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; State Key Lab Hydraul & Mt River Engn, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| |
Collapse
|
15
|
Pick FC, Fish KE, Husband S, Boxall JB. Non-invasive Biofouling Monitoring to Assess Drinking Water Distribution System Performance. Front Microbiol 2021; 12:730344. [PMID: 34777279 PMCID: PMC8581547 DOI: 10.3389/fmicb.2021.730344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilms are endemic in drinking water distribution systems (DWDS), forming on all water and infrastructure interfaces. They can pose risks to water quality and hence consumers. Our understanding of these biofilms is limited, in a large part due to difficulties in sampling them without unacceptable disruption. A novel, non-destructive and non-disruptive biofilm monitoring device (BMD), which includes use of flow cytometry analysis, was developed to assess biofouling rates. Laboratory based experiments established optimal configurations and verified reliable cell enumeration. Deployment at three operational field sites validated assessment of different biofouling rates. These differences in fouling rates were not obvious from bulk water sampling and analysis, but did have a strong correlation with long-term performance data of the associated networks. The device offers the potential to assess DWDS performance in a few months, compared to the number of years required to infer findings from historical customer contact data. Such information is vital to improve the management of our vast, complex and uncertain drinking water supply systems; for example rapidly quantifying the benefits of improvements in water treatment works or changes to maintenance of the network.
Collapse
Affiliation(s)
- Frances C Pick
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Katherine E Fish
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Stewart Husband
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Joby B Boxall
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management. SUSTAINABILITY 2021. [DOI: 10.3390/su13084498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reservoirs are a common way to store and retain water serving for a multitude of purposes like storage of drinking and irrigation water, recreation, flood protection, navigation, and hydropower production, and have been built since centuries. Today, few reservoirs serve only one purpose, which requires management of present demands and interests. Since each reservoir project will cause negative impacts alongside desired advantages both on a local, regional and global scale, it is even more urgent to develop a common management framework in an attempt to mitigate negative impacts, incorporate different demands and make them visible within the discourse in order to avoid conflicts from early on. The scientific publications on reservoirs are manifold, yet a comprehensive and integrative holistic tool about management of this infrastructure is not available. Therefore, a comprehensive and integrated conceptual tool was developed and proposed by the authors of this paper that can contribute to the sustainable management of existing reservoirs. The tool presented herein is based on the results from the interdisciplinary CHARM (CHAllenges of Reservoir Management) project as well as the condensed outcome of relevant literature to aid and enhance knowledge of reservoir management. The incorporated results are based on field, laboratory and empirical social research. The project CHARM focused on five different aspects related to existing reservoirs in southern Germany (Schwarzenbachtalsperre, Franconian Lake District), namely: sedimentation of reservoirs, biostabilisation of fine sediments, toxic cyanobacteria(l) (blooms), greenhouse gas emissions from reservoirs and social contestation, respectively consent. These five research foci contributed to the topics and setup of a conceptual tool, put together by the research consortium via delphi questioning, which can be found alongside this publication to provide insights for experts and laymen. Conceptualising and analysing the management in combination with quantitative and qualitative data in one descriptive tool presents a novelty for the case studies and area of research. The distribution within the scientific community and interested public will possibly make a positive contribution to the goal of sustainable water resources management in the future.
Collapse
|