1
|
Almarzooqi N, Alwan RA, AlMarzooqi F, Ghaffour N, Hong S, Arafat HA. Solar-driven surface-heating membrane distillation using Ti 3C 2T x MXene-coated spacers. CHEMOSPHERE 2024; 351:141129. [PMID: 38199497 DOI: 10.1016/j.chemosphere.2024.141129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The emergence of two-dimensional (2D) MXenes as efficient light-to-heat conversion materials offers significant potential for solar-based desalination, particularly in photothermal interfacial evaporation, enabling cost-effective solar-powered membrane distillation (MD). This study investigates solar-powered MD afforded by a photothermally functionalized spacer, which is built by spray-coating Ti3C2Tx MXene sheets on metallic spacers. 2D Ti3C2Tx MXene gives an ultrahigh photothermal conversion efficiency; thereby, by Ti3C2Tx MXene-coated metallic spacer, this rationally designed spacer allows for a localized photothermal conversion and interfacial feed heating effect on the membrane surface, especially for MD operation. As a feed spacer and a photothermal element, Ti3C2Tx MXene-coated metallic spacer exhibited stable enhanced water flux of up to 0.36 kg·m-2h-1 under one sun illumination for a feed salinity of 35 g·L-1, corresponding energy conversion efficiency of 28.3 %. Overall, the developed photothermal Ti3C2Tx MXene-coated spacers displayed great potential in enhancing the performance, scalability, and feasibility of solar-driven MD process, paving the way for further development of photothermal elements that can be implemented in solar MD applications.
Collapse
Affiliation(s)
- Noora Almarzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rawan Abu Alwan
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Faisal AlMarzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; Environmental Science & Engineering Program, Biological & Environmental Science & Engineering Division, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Seunghyun Hong
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Hassan A Arafat
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
2
|
Liu D, Yusufu K, Yu F, Wu C, Zhong L, Xu Y, Liu J, Ma J, Wang W. Quasi-critical condition to balance the scaling and membrane lifespan tradeoff in hypersaline water concentration. WATER RESEARCH 2023; 242:120265. [PMID: 37390652 DOI: 10.1016/j.watres.2023.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Mineral scaling is an inconvenient obstacle for membrane distillation in hypersaline wastewater concentration applications, compromising membrane lifespan to maintain high water recovery. Although various measures are devoted to alleviating mineral scaling, the uncertainty and complexity of scale characteristics make it difficult to accurately identify and effectively prevent. Herein, we systematically elucidate a practically applicable principle to balance the trade-off between mineral scaling and membrane lifespan. Through experimental demonstration and mechanism analysis, we find a consistent concentration phenomenon of hypersaline concentration in different situations. Based on the characteristics of the binding force between the primary scale crystal and the membrane, the quasi-critical concentration condition is sought to prevent the accumulation and intrusion of mineral scale. The quasi-critical condition achieves the maximum water flux on the premise of guaranteeing the membrane tolerance, and the membrane performance can be restored by undamaged physical cleaning. This report opens up an informative horizon for circumventing the inexplicable scaling explorations and develops a universal evaluation strategy to provide technical support for membrane desalination.
Collapse
Affiliation(s)
- Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Kudereti Yusufu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Fuyun Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Chuandong Wu
- National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, P R China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, P R China
| | - Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Jie Liu
- Department of Military Facilities, Army Logistics University, Chongqing 401331, P R China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P R China.
| |
Collapse
|
3
|
Han F, Zhao J, Bian Y, Guo J, Chen L. Electro mitigation of calcium carbonate and calcium sulfate scaling in an optimized thermal conductive membrane distillation process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Jeong S, Gu B, Choi S, Ahn SK, Lee J, Lee J, Jeong S. Engineered multi-scale roughness of carbon nanofiller-embedded 3D printed spacers for membrane distillation. WATER RESEARCH 2023; 231:119649. [PMID: 36702024 DOI: 10.1016/j.watres.2023.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Membrane distillation (MD) transfers heat and mass simultaneously through a hydrophobic membrane. Hence, it is sensitive to both concentration and temperature polarisation (CP and TP) effects. In this study, we fabricated feed spacers to improve MD efficiency by alleviating the polarisation effects. First, a 3D printed spacer design was optimised to show superior performance amongst the others tested. Then, to further enhance spacer performance, we incorporated highly thermally stable carbon nanofillers, including carbon nanotubes (CNT) and graphene, in the fabrication of filaments for 3D printing. All the fabricated spacers had a degree of engineered multi-scale roughness, which was relatively high compared to that of the polylactic acid (PLA) spacer (control). The use of nanomaterial-incorporated spacers increased the mean permeate flux significantly compared to the PLA spacer (27.1 L/m2h (LMH)): a 43% and 75% increase when using the 1% graphene-incorporated spacer (38.9 LMH) and 2% CNT incorporated spacer (47.5 LMH), respectively. This could be attributed to the locally enhanced turbulence owing to the multi-scale roughness formed on the spacer, which further increased the vaporisation rate through the membrane. Interestingly, only the CNT-embedded spacer markedly reduced the ion permeation through the membrane, which may be due to the effective reduction of CP. This further decreased with increasing CNT concentration, confirming that the CNT spacer can simultaneously reduce the CP and TP effects in the MD process. Finally, we successfully proved that the multi-scale roughness of the spacer surface induces micromixing near the membrane walls, which can improve the MD performance via computational fluid dynamics.
Collapse
Affiliation(s)
- Seongeom Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Luo Y, Tan S, Luo Z, Li J, Zhu Z, Jia B, Liu Z. Grass‐to‐stone surface inspired long‐term inhibiting scaling. NANO SELECT 2022. [DOI: 10.1002/nano.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yimin Luo
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Sheng Tan
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Zhuangzhu Luo
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Jingbo Li
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Zewei Zhu
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Baoguang Jia
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Zhipeng Liu
- School of Materials Sun Yat‐sen University Shenzhen China
| |
Collapse
|
6
|
Khalil A, Francis L, Hashaikeh R, Hilal N. 3D
printed membrane‐integrated spacers for enhanced antifouling in ultrafiltration. J Appl Polym Sci 2022. [DOI: 10.1002/app.53019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdullah Khalil
- NYUAD Water Research Center New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - Lijo Francis
- NYUAD Water Research Center New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center New York University Abu Dhabi Abu Dhabi United Arab Emirates
| |
Collapse
|
7
|
Norfarhana A, Ilyas R, Ngadi N, Sharma S, Sayed MM, El-Shafay A, Nordin A. Natural Fiber-Reinforced Thermoplastic ENR/PVC Composites as Potential Membrane Technology in Industrial Wastewater Treatment: A Review. Polymers (Basel) 2022; 14:2432. [PMID: 35746008 PMCID: PMC9228183 DOI: 10.3390/polym14122432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Membrane separation processes are prevalent in industrial wastewater treatment because they are more effective than conventional methods at addressing global water issues. Consequently, the ideal membranes with high mechanical strength, thermal characteristics, flux, permeability, porosity, and solute removal capacity must be prepared to aid in the separation process for wastewater treatment. Rubber-based membranes have shown the potential for high mechanical properties in water separation processes to date. In addition, the excellent sustainable practice of natural fibers has attracted great attention from industrial players and researchers for the exploitation of polymer composite membranes to improve the balance between the environment and social and economic concerns. The incorporation of natural fiber in thermoplastic elastomer (TPE) as filler and pore former agent enhances the mechanical properties, and high separation efficiency characteristics of membrane composites are discussed. Furthermore, recent advancements in the fabrication technique of porous membranes affected the membrane's structure, and the performance of wastewater treatment applications is reviewed.
Collapse
Affiliation(s)
- A.S. Norfarhana
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - R.A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - N. Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Main Campus-Kapurthala, Kapurthala 144603, Punjab, India
| | - Mohamed Mahmoud Sayed
- Architectural Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt;
| | - A.S. El-Shafay
- Department of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi Arabia
| | - A.H. Nordin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
| |
Collapse
|
8
|
Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Koo JW, Ho JS, Tan YZ, Tan WS, An J, Zhang Y, Chua CK, Chong TH. Fouling mitigation in reverse osmosis processes with 3D printed sinusoidal spacers. WATER RESEARCH 2021; 207:117818. [PMID: 34749103 DOI: 10.1016/j.watres.2021.117818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Feed spacers are an essential part of spiral wound modules for reverse osmosis (RO). They create flow channels between membrane sheets and manipulate hydrodynamic conditions to control membrane fouling. In this work, additive manufacturing (Polyjet) was used to print novel sinusoidal spacers with wavy axial filaments connected by perpendicular (ST) or slanted (SL) transverse filaments. When tested with 2 g/L NaCl solution, conventional and SL spacers had similar flux while the ST spacer had about 5-7% lower flux. The pressure losses for ST and SL spacers increased by up to 3 folds depending on the flow condition. In the colloidal silica fouling and biofouling tests, the sinusoidal spacers showed lower membrane permeability decrease of 46% for ST, 41% for SL vs 56% for conventional and 26% for ST, 22% for SL vs 33% for conventional, respectively. Optical coherence tomography images from colloidal silica fouling and confocal images from biofouling tests revealed that fouling patterns were closely associated with the local hydrodynamic conditions. Overall, sinusoidal spacers showed promising results in controlling membrane fouling, but there is potential for further optimizations to reduce channel pressure loss.
Collapse
Affiliation(s)
- Jing Wee Koo
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141, Singapore; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141, Singapore
| | - Yong Zen Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Wen See Tan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yi Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chee Kai Chua
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
10
|
Khalil A, Ahmed FE, Hilal N. The emerging role of 3D printing in water desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148238. [PMID: 34107408 DOI: 10.1016/j.scitotenv.2021.148238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 05/27/2023]
Abstract
Unmatched flexibility in terms of material selection, design and scalability, along with gradually decreasing cost, has led 3D printing to gain significant attention in various water treatment and desalination applications. In desalination, 3D printing has been applied to improve the energy efficiency of existing technologies. For thermal desalination, this involves the use of 3D printed components that enhance water evaporation and energy harvesting with new materials and designs. For membrane-based desalination, 3D printing offers membranes and other module components with customized materials and geometries for better fouling resistance and productivity. This review highlights the current status, advances and challenges associated with 3D printing in both thermal and membrane-based desalination technologies. Other unique benefits offered by 3D printing for water desalination along with the associated challenges are also discussed in this review. Finally, the future prospects and research directions are highlighted related to the application of 3D printing in the water desalination industry.
Collapse
Affiliation(s)
- Abdullah Khalil
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Farah Ejaz Ahmed
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
11
|
Stability of Ar/O 2 Plasma-Treated Polypropylene Membranes Applied for Membrane Distillation. MEMBRANES 2021; 11:membranes11070531. [PMID: 34357181 PMCID: PMC8306343 DOI: 10.3390/membranes11070531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
In the present work, Ar/O2 plasma treatment was used as a surface modification tool for polypropylene (PP) membranes. The effect of the plasma conditions on the properties of the modified PP surface has been investigated. For this purpose, the influence of gas composition and its flow rate, plasma power excitation as well as treatment time on the contact angle of PP membranes has been investigated. The properties of used membranes were determined after various periods of time: immediately after the modification process as well as after one, four and five years of storage. Moreover, the used membranes were evaluated in terms of their performance in long-term MD process. Through detailed studies, we demonstrated that the performed plasma treatment process effectively enhanced the performance of the modified membranes. In addition, it was shown that the surface modification did not affect the degradation of the membrane matrix. Indeed, the used membranes maintained stable process properties throughout the studied period.
Collapse
|
12
|
Lin W, Zhang Y, Li D, Wang XM, Huang X. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. WATER RESEARCH 2021; 198:117146. [PMID: 33945947 DOI: 10.1016/j.watres.2021.117146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Membrane technologies have been widely applied in water treatment, wastewater reclamation and seawater desalination. Feed spacer present in spiral wound membrane (SWM) modules plays a pivotal role in creating flow channels, promoting fluid mixing and enhancing mass transfer. However, it induces the increase of feed channel pressure (FCP) drop and localized stagnant zones that provokes membrane fouling. For the first time, we comprehensively review the research evolvement on feed spacer in SWM modules for water treatment over the last 20 years, to reveal the impacts of feed spacer on the hydrodynamics and biofouling in the spacer-filled channel, and to discuss the potential approaches and current limitations for the modification of feed spacer. The research process can be divided into three phases, with research focus shifting from hydrodynamics in Phase Ⅰ (the year of 2001-2008), to biofouling in Phase Ⅱ (the year of 2009-2015), and then to novel spacer designs in Phase Ⅲ (the year of 2016-2020). The spacer configuration has a momentous impact on the hydraulic performance regarding flow velocity field, shear stress, mass transfer and FCP drop. Biofouling initially occurs on feed spacer, especially around spacer filaments and the contact zones with membrane surface, and ultimately degrades the overall membrane performance indicating the importance of controlling spacer biofouling. The modification of feed spacer is mainly achieved by altering surface chemistry or introducing novel configurations. However, the stability of spacer coating and the economy and practicality of 3D-printed spacer remain a predicament to be tackled. Future studies are suggested to focus on the standardization of testing conditions for spacer evaluation, the effect of hydrodynamics on membrane fouling control, the design and fabrication of novel feed spacer adaptable for SWM modules, the application of feed spacer for drinking water production, organic fouling control in spacer-filled channel and the role of permeate spacer on membrane performance.
Collapse
Affiliation(s)
- Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|