1
|
Feng Y, Song Y, Zhu M, Li M, Gong C, Luo S, Mei W, Feng H, Tan W, Song C. Microbes drive more carbon dioxide and nitrous oxide emissions from wetland under long-term nitrogen enrichment. WATER RESEARCH 2025; 272:122942. [PMID: 39671869 DOI: 10.1016/j.watres.2024.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Wetlands are frequently regarded as weak carbon dioxide (CO2) sinks, the largest natural sources of methane (CH4), and weak sources of nitrous oxide (N2O). Anthropogenic activities and climate change-induced nitrogen (N) enrichment may affect wetland carbon (C) and N cycling via soil microbes, consequently modifying the original greenhouse gas (GHG) emissions. However, the effects and mechanisms of the duration and rate of N inputs on wetland GHG emissions remain uncertain and controversial. Therefore, this study conducted an in situ field experiment to investigate the effects and driving mechanisms of long-term N enrichment on wetland GHG emissions throughout the 2023 growing season by using the static opaque chambers method. Soil microbial composition and function were also analyzed through metagenomic sequencing. The results showed that N enrichment significantly increased wetland CO2 emissions, which were associated with the abundance of microbial C-fixing functional genes and the soil C content. Although nitrogen enrichment tended to suppress CH4 emissions, the effect was not significant. High N enrichment created a powerful wetland N2O source driven by the abundance of microbial nitrification function genes and microbial species. Vegetation influenced wetland GHG emissions by altering soil carbon content. This study elucidates the response mechanism of wetland GHG emissions to long-term nitrogen enrichment, thereby furnishing a theoretical basis for wetland conservation and nitrogen management.
Collapse
Affiliation(s)
- Yisong Feng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; College of Geographical Science and Tourism, Jilin Normal University, Siping, 136000, China
| | - Yanyu Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Mengyuan Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengting Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; College of Geographical Science and Tourism, Jilin Normal University, Siping, 136000, China
| | - Chao Gong
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shouyang Luo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wenkai Mei
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; College of Geographical Science and Tourism, Jilin Normal University, Siping, 136000, China
| | - Huanhuan Feng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wenwen Tan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Changchun Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
2
|
Zhao X, Liang X, Zhu Z, Yuan Z, Yu S, Liu Y, Wang J, Mason-Jones K, Kuzyakov Y, Chen J, Ge T, Wang S. Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2070-2081. [PMID: 39836728 DOI: 10.1021/acs.est.4c08274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO2 efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly (p < 0.05) increased by 4-29% at 18 °C and 9-41% at 23 °C after 6 days, raising cumulative CO2 emissions by 14% at 18 °C and 21% at 23 °C. Phages decreased dominant bacterial taxa and increased bacterial community diversity (consistent with a "cull-the-winner" dynamic), thus altering the predicted microbiome functions. Specifically, phages enriched some taxa (such as Pseudomonas, Anaerocolumna, and Caulobacter) involved in degrading complex compounds and consequently promoted functions related to C cycling. Higher temperature facilitated phage-bacteria interactions, increased bacterial diversity, and enzyme activities, boosting DOM mineralization by 16%. Collectively, phages impact soil DOM mineralization by shifting microbial communities and functions, with moderate temperature changes modulating the magnitude of these processes but not qualitatively altering their behavior.
Collapse
Affiliation(s)
- Xiaolei Zhao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolong Liang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Senxiang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yalong Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingkuan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Kyle Mason-Jones
- Department of Geoscience, University of Tübingen, 72074 Tübingen, Germany
| | - Yakov Kuzyakov
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077 Goettingen, Germany
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Chingangbam SS, Khoiyangbam RS. Ebullition mediated transport dominates methane emission from open water area of the floating national park in Indo Burma hotspot. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64842-64856. [PMID: 39560867 DOI: 10.1007/s11356-024-35523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Ebullition is an important route of methane emission from aquatic ecosystems. Ebullitive CH4 emissions from the wetlands, particularly the mountain wetlands of Eastern Himalayan, are poorly understood. To gain insights into the role of ebullition in CH4 emissions and understand the factors influencing CH4 ebullition, we conducted field measurements of the spatial and temporal variation of ebullition in a freshwater wetland area in floating national park (40 sq. km, 780 m amsl, maximum depth < 4.5) in Northeast India. The average ebullitive CH4 flux ranged from 220.24 to 1889.35 mg m-2 d-1, while the overall CH4 fluxes varied widely ranging from 345.81 to 2240.56 mg m-2 d-1. Methane constituted 90.18% of the gas bubbles produced from the sediment, with CO2 comprising 8.82% of the total sediment gas in the wetland. This suggests that CH4 emission through ebullition plays an important role in transporting biogenic CH4 to the atmosphere. The ebullition rate was markedly higher during summer and lower during winter and exhibited a significant seasonal variation. At a spatial scale, the sites with dense aquatic vegetation growth increase CH4 emission where plants derived autochthonous sediment organic matter, substantiating the supply of carbon substrate for CH4 production. Linear mixed-effect models revealed that water temperature, organic matter, organic carbon and dissolved organic matter are the important factors affecting the ebullitive methane flux. Our results indicate that mountainous wetlands with organic-rich sediments may be potential hotspots for CH4 ebullition. However, the lack of information on these wetlands in the scientific literature emphasizes the need for further research.
Collapse
Affiliation(s)
- Suraj S Chingangbam
- Department of Environmental Science, Manipur University, Canchipur, Imphal, 795003, India
| | - Raju Singh Khoiyangbam
- Department of Environmental Science, Manipur University, Canchipur, Imphal, 795003, India.
| |
Collapse
|
4
|
Wei S, Chu X, Sun B, Yuan W, Song W, Zhao M, Wang X, Li P, Han G. Climate warming negatively affects plant water-use efficiency in a seasonal hydroperiod wetland. WATER RESEARCH 2023; 242:120246. [PMID: 37348421 DOI: 10.1016/j.watres.2023.120246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Climate warming has substantial influences on plant water-use efficiency (PWUE), which is defined as the ratio of plant CO2 uptake to water loss and is central to the cycles of carbon and water in ecosystems. However, it remains uncertain how does climate warming affect PWUE in wetland ecosystems, especially those with seasonally alternating water availability during the growing season. In this study, we used a continuous 10-year (2011-2020) eddy covariance (EC) dataset from a seasonal hydroperiod wetland coupled with a 15-year (2003-2017) satellite-based dataset (called PML-V2) and an in situ warming experiment to examine the climate warming impacts on wetland PWUE. The 10-year EC observational results revealed that rising temperatures had significant negative impacts on the interannual variations in wetland PWUE, and increased transpiration (Et) rather than changes in gross primary productivity (GPP) dominated these negative impacts. Furthermore, the 15-year satellite-based evidence confirmed that, in the study region, climate warming had significant negative consequences for the interannual variations in wetland PWUE by enhancing wetland Et. Lastly, at the leaf-scale, the light response curves of leaf photosynthesis, leaf Et, and leaf-scale PWUE indicated that wetland plants need to consume more water during the photosynthesis process under warmer conditions. These findings provide a fresh perspective on how climate warming influences carbon and water cycles in wetland ecosystems.
Collapse
Affiliation(s)
- Siyu Wei
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Chu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China
| | - Baoyu Sun
- Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Sun Yat-sen University, Zhuhai, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China
| | - Weimin Song
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China
| | - Mingliang Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China
| | - Xiaojie Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China
| | - Peiguang Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China
| | - Guangxuan Han
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang S, Yu S, Zhao X, Zhao X, Mason-Jones K, Zhu Z, Redmile-Gordon M, Li Y, Chen J, Kuzyakov Y, Ge T. Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157517. [PMID: 35872205 DOI: 10.1016/j.scitotenv.2022.157517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Microbial mineralization of dissolved organic matter (DOM) plays an important role in regulating C and nutrient cycling. Viruses are the most abundant biological agents on Earth, but their effect on the density and activity of soil microorganisms and, consequently, on mineralization of DOM under different temperatures remains poorly understood. To assess the impact of viruses on DOM mineralization, we added soil phage concentrate (active vs. inactive phage control) to four DOM extracts containing inoculated microbial communities and incubated them at 18 °C and 23 °C for 32 days. Infection with active phages generally decreased DOM mineralization at day one and showed accelerated DOM mineralization later (especially from day 5 to 15) compared to that with the inactivated phages. Overall, phage infection increased the microbially driven CO2 release. Notably, while higher temperature increased the total CO2 release, the cumulative CO2 release induced by phage infection (difference between active phages and inactivated control) was not affected. However, higher temperatures advanced the response time of the phages but shortening its active period. Our findings suggest that bacterial predation by phages can significantly affect soil DOM mineralization. Therefore, higher temperatures may accelerate host-phage interactions and thus, the duration of C recycling.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Senxiang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoyan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolei Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kyle Mason-Jones
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Marc Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley GU23 6QB, UK
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Eissler Y, Castillo-Reyes A, Dorador C, Cornejo-D'Ottone M, Celis-Plá PSM, Aguilar P, Molina V. Virus-to-prokaryote ratio in the Salar de Huasco and different ecosystems of the Southern hemisphere and its relationship with physicochemical and biological parameters. Front Microbiol 2022; 13:938066. [PMID: 36060762 PMCID: PMC9434117 DOI: 10.3389/fmicb.2022.938066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
The virus-to-prokaryote ratio (VPR) has been used in many ecosystems to study the relationship between viruses and their hosts. While high VPR values indicate a high rate of prokaryotes' cell lysis, low values are interpreted as a decrease in or absence of viral activity. Salar de Huasco is a high-altitude wetland characterized by a rich microbial diversity associated with aquatic sites like springs, ponds, streams and a lagoon with variable physicochemical conditions. Samples from two ponds, Poza Rosada (PR) and Poza Verde (PV), were analyzed by epifluorescence microscopy to determine variability of viral and prokaryotic abundance and to calculate the VPR in a dry season. In addition, to put Salar de Huasco results into perspective, a compilation of research articles on viral and prokaryotic abundance, VPR, and metadata from various Southern hemisphere ecosystems was revised. The ecosystems were grouped into six categories: high-altitude wetlands, Pacific, Atlantic, Indian, and Southern Oceans and Antarctic lakes. Salar de Huasco ponds recorded similar VPR values (an average of 7.4 and 1.7 at PR and PV, respectively), ranging from 3.22 to 15.99 in PR. The VPR variability was associated with VA and chlorophyll a, when considering all data available for this ecosystem. In general, high-altitude wetlands recorded the highest VPR average (53.22 ± 95.09), followed by the Oceans, Southern (21.91 ± 25.72), Atlantic (19.57 ± 15.77) and Indian (13.43 ± 16.12), then Antarctic lakes (11.37 ± 15.82) and the Pacific Ocean (6.34 ± 3.79). Physicochemical variables, i.e., temperature, conductivity, nutrients (nitrate, ammonium, and phosphate) and chlorophyll a as a biological variable, were found to drive the VPR in the ecosystems analyzed. Thus, the viral activity in the Wetland followed similar trends of previous reports based on larger sets of metadata analyses. In total, this study highlights the importance of including viruses as a biological variable to study microbial temporal dynamics in wetlands considering their crucial role in the carbon budgets of these understudied ecosystems in the southern hemisphere.
Collapse
Affiliation(s)
- Yoanna Eissler
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Yoanna Eissler
| | - Alonso Castillo-Reyes
- Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Marcela Cornejo-D'Ottone
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paula S. M. Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Polette Aguilar
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Verónica Molina
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile
- Verónica Molina
| |
Collapse
|