1
|
Zhang W, Zong Y, Zhang J, Ai J, He H, Li L, Peng S, Zhou H, Wang D, Wang Q. Mechanistic insights into the viral microorganism inactivation during lime stabilization for wastewater sludges. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136884. [PMID: 39689559 DOI: 10.1016/j.jhazmat.2024.136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The pathogens inactivation in wastewater sludges is vitally important for safely managing solid wastes and protecting public and environmental health especially in the emergency. Reports have shown the effectiveness of lime to kill virus pathogens in sludges, but mechanism of virus inactivation and related human diseases is unclear. This study evaluated representative limes of CaO/CaO2 on actual viral microorganism inactivation by viral metagenomic sequencing technology. As results, the CaO2 treatment enhanced the sludge hydrolysis and enveloped viral pathogens suppression via EPS structure destruction by oxidative radical generations; while CaO suppressed most of none-enveloped plant related viral pathogens. Most of the viromes of plant virus including Virgaviridae and Nodaviridae were inactivated by CaO, but the human virus-Feirsviridae and plant virus-Solemoviridae were occurred after lime stabilization compared to untreated sludge, with abundances of 1 %-37 % and 21 %-32 % in CaO-treated (CaO-T) and CaO2-treated (CaO2-T) samples, respectively. In addition, metatranscriptome analysis revealed distinct gene expression patterns between the CaO-T and CaO2-T sludges, in which lipopolysaccharide biosynthesis (LPS) and aminoacyl-tRNA synthetases (ARSs) in CaO-T, the formation of ribosome in CaO2-T were crucial to RNA virus regrowth in sludge. These findings suggested neither of CaO and CaO2 could completely suppress pathogens in sludge, and the effect of representative limes of CaO and CaO2 on the viral pathogen diversity, abundance, and metabolic function of the core microbiome on virus suppression and regrowth were ignored. Therefore, combined processes were recommended to provide possible alternatives for sludge safe management in pandemic emergencies.
Collapse
Affiliation(s)
- Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Hang He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- College of Environmental and Resource Science of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Yang W, Cai C, Wang S, Wang X, Dai X. Unveiling the inactivation mechanisms of different viruses in sludge anaerobic digestion based on factors identification and damage analysis. BIORESOURCE TECHNOLOGY 2024; 413:131541. [PMID: 39341425 DOI: 10.1016/j.biortech.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Despite anaerobic digestion having potential for pathogen reduction in sewage sludge, the behaviors of viruses as the primary health concern are rarely studied. This study investigated the inactivation kinetics and mechanisms of four typical virus surrogates with different structures in mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of sludge. Virus inactivation in MAD was virus-type-dependent correspondingly to different function loss. Temperature drove the faster inactivation proceeding for enveloped Phi6, while temperature and ammonia were the critical inactivation factors for nonenveloped MS2, causing genome degradation and protein functional damage. Interaction with sludge solids played critical role in DNA viruses T4 and Phix174 inactivation via inducing host binding function damage. By comparison, TAD enhanced viral protein denaturation, bringing efficient inactivation with reducing heterogeneity among nonenveloped viruses. These insights into unique virus behaviors in anaerobic digestion systems can provide guidance for developing more effective disinfection protocols and improving sludge biosafety.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Gamelas SRD, Bartolomeu M, Vieira C, Faustino MAF, Tomé JPC, Tomé AC, Almeida A, Lourenço LMO. Bacterial Photodynamic Inactivation: Eradication of Staphylococcus aureus and Escherichia coli Mediated by Pyridinium-Pyrazolyl Zinc(II) Phthalocyanines. ACS APPLIED BIO MATERIALS 2024; 7:7748-7757. [PMID: 39432009 DOI: 10.1021/acsabm.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Antimicrobial resistance remains an enduring global health issue, manifested when microorganisms, such as bacteria, lack responsiveness to antimicrobial treatments. Photodynamic inactivation (PDI) of microorganisms arises as a noninvasive, nontoxic, and repeatable alternative for the inactivation of a broad range of pathogens. So, this study reports the synthesis, structural characterization, and photophysical properties of a new tetra-β-substituted pyridinium-pyrazolyl zinc(II) phthalocyanine (ZnPc 1a) that was compared with two previously described pyridinium-pyrazolyl ZnPcs 2a and 3a. The PDI efficacy of these three ZnPcs (1a-3a) against a drug-resistant Gram-positive bacterium (as Staphylococcus aureus) and a Gram-negative bacterium (as Escherichia coli) is also reported. The PDI efficacy toward these bacteria was examined with ZnPcs 1a-3a in the 5.0-10.0 μM range using a white light source with an irradiance of 150 mW/cm2. All ZnPcs displayed a significant PDI activity against S. aureus, with reductions superior to 3 Log CFU/mL. Increasing the treatment time, the E. coli was inactivated until the detection limit of the method (>6.3 Log CFU/mL) using the quaternized ZnPcs 1a-3a (10.0 μM, 120 min) being the inactivation time was reduced when added the KI for ZnPcs 1a and 3a. These findings demonstrate the effective PDI performance of pyridinium-pyrazolyl group-bearing PSs, indicating their potential use as a versatile antimicrobial agent for managing infections induced by Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P C Tomé
- CQE, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Owusu-Agyeman I, Perez-Zabaleta M, Cetecioglu Z. The fate of severe acute respiratory syndrome coronavirus-2 and pepper mild mottle virus at various stages of wastewater treatment process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117097. [PMID: 39332205 DOI: 10.1016/j.ecoenv.2024.117097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the efficiency of the treatment processes of wastewater treatment plants (WWTPs) to remove severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pepper mild mottle virus (PMMoV) from the wastewater and sewage sludge, as well as the influence of the mode of operation on the quality of the treated wastewater. SARS-CoV-2 and PMMoV were detected and quantified at different stages of the wastewater and sludge treatment process of three major WWTPs in Stockholm, Sweden. The results showed that primary, biological, and advanced membrane treatment processes are effective in removing SARS-CoV-2 from the wastewater with removal efficiencies of 99-100 % for all WWTPs, while the virus was accumulated in the primary and waste-activated sludges due to higher affinity to biosolids. Operation strategies such as bypass reintroduced the virus into the treated wastewater. The WWTPs achieved relatively low PMMoV removal efficiencies (63-87 %) most probably due to the robust capsid structure of the virus. Anaerobic digestion could not completely remove SARS-CoV-2 and PMMoV from the sludge leading to increased levels of SARS-CoV-2 and PMMoV in dewatered sludge. The study gives an overview of WWTPs' role in tackling pathogen spread in society in the event of a pandemic and disease breakout.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden.
| | - Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| |
Collapse
|
5
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
6
|
Hadi M, Kheiri R, Baghban M, Sayahi A, Nasseri S, Alimohammadi M, Khastoo H, Aminabad MS, Vaghefi KA, Vakili B, Tashauoei H, Borji SH, Iravani E. The occurrence of SARS-CoV-2 in Tehran's municipal wastewater: performance of treatment systems and feasibility of wastewater-based epidemiology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:281-293. [PMID: 38887767 PMCID: PMC11180145 DOI: 10.1007/s40201-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 06/20/2024]
Abstract
Analyzing municipal wastewater for the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) helps to evaluate the efficacy of treatment systems in mitigating virus-related health risks. This research investigates wastewater treatment plants' (WWTPs) performance in the reduction of SARS-CoV-2 from municipal wastewater in Tehran, Iran. SARS-CoV-2 RNA was measured within sewers, at the inlets, and after the primary and secondary treatment stages of three main WWTPs. Within sewers, the average virus titer stood at 58,600 gc/L, while at WWTP inlets, it measured 38,136 gc/L. A substantial 67% reduction in virus titer was observed at the inlets, accompanied by a 2-log reduction post-primary treatment. Remarkably, the biological treatment process resulted in complete virus elimination across all plants. Additionally, a notable positive correlation (r > 0.8) was observed between temperature and virus titer in wastewater. Using wastewater-based epidemiology (WBE) technique and the estimated SARS-CoV-2 RNA shedding rates, the infection prevalence among populations served by WWTPs found to be between 0.128% to 0.577%. In conclusion, this research not only advances our understanding of SARS-CoV-2 dynamics within wastewater treatment systems but also provides practical insights for enhancing treatment efficiency and implementing the feasibility of WBE strategies in Tehran. These implications contribute to the broader efforts to protect public health and mitigate the impact of future viral outbreaks. Graphical abstract
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Roohollah Kheiri
- Water Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Iran
| | - Mahtab Baghban
- Reference Laboratory of Water and Wastewater, Tehran Province Water and Wastewater Company, Tehran, Iran
| | - Ahmad Sayahi
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Khastoo
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Mehri Solaimany Aminabad
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Kooshiar Azam Vaghefi
- Manager of Water Quality Control Bureau, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Behnam Vakili
- Office of Improvement on Wastewater Operation Procedures, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Hamidreza Tashauoei
- Department of Environmental Health Engineering, School of Health, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Saeedeh Hemmati Borji
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Iravani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Carine MR, Pagilla KR. A mass balance approach for quantifying the role of natural decay and fate mechanisms on SARS-CoV-2 genetic marker removal during water reclamation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11015. [PMID: 38599573 DOI: 10.1002/wer.11015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The recent SARS-CoV-2 outbreak yielded substantial data regarding virus fate and prevalence at water reclamation facilities (WRFs), identifying influential factors as natural decay, adsorption, light, pH, salinity, and antagonistic microorganisms. However, no studies have quantified the impact of these factors in full scale WRFs. Utilizing a mass balance approach, we assessed the impact of natural decay and other fate mechanisms on genetic marker removal during water reclamation, through the use of sludge and wastewater genetic marker loading estimates. Results indicated negligible removal of genetic markers during P/PT (primary effluent (PE) p value: 0.267; preliminary and primary treatment (P/PT) accumulation p value: 0.904; and thickened primary sludge (TPS) p value: 0.076) indicating no contribution of natural decay and other fate mechanisms toward removal in P/PT. Comparably, adsorption and decomposition was found to be the dominant pathway for genetic marker removal (thickened waste activated sludge (TWAS) log loading 9.75 log10 GC/day); however, no estimation of log genetic marker accumulation could be carried out due to high detections in TWAS. PRACTITIONER POINTS: The mass balance approach suggested that the contribution of natural decay and other fate mechanisms to virus removal during wastewater treatment are negligible compared with adsorption and decomposition in P/PT (p value: 0.904). During (P/PT), a higher viral load remained in the (PE) (14.16 log10 GC/day) compared with TPS (13.83 log10 GC/day); however, no statistical difference was observed (p value: 0.280) indicting that adsorption/decomposition most probably did not occur. In secondary treatment (ST), viral genetic markers in TWAS were consistently detected (13.41 log10 GC/day) compared with secondary effluent (SE), indicating that longer HRT and the potential presence of extracellular polymeric substance-containing enriched biomass enabled adsorption/decomposition. Estimations of total solids and volatile solids for TPS and TWAS indicated that adsorption affinity was different between solids sampling locations (p value: <0.0001).
Collapse
Affiliation(s)
- Madeline R Carine
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
8
|
Zarei Mahmoudabadi T, Pasdar P, Eslami H. Exposure risks to SARS-CoV-2 (COVID-19) in wastewater treatment plants: a review. SUSTAINABLE WATER RESOURCES MANAGEMENT 2024; 10:85. [DOI: 10.1007/s40899-024-01065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025]
|
9
|
Toribio-Avedillo D, Gómez-Gómez C, Sala-Comorera L, Galofré B, Muniesa M. Adapted methods for monitoring influenza virus and respiratory syncytial virus in sludge and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170636. [PMID: 38331285 DOI: 10.1016/j.scitotenv.2024.170636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Wastewater-based surveillance constitutes a valuable methodology for the continuous monitoring of viral circulation, with the capacity to function as an early warning system. It holds particular significance in scenarios where respiratory viruses exhibit overlapping clinical presentations, as occurs with SARS-CoV-2, influenza virus (IV), and respiratory syncytial virus (RSV), and allows seasonal virus outbreaks to be distinguished from COVID-19 peaks. Furthermore, sewage sludge, given it harbors concentrated human waste from a large population, serves as a substantial reservoir for pathogen detection. To effectively integrate wastewater-based epidemiology into infectious disease surveillance, the detection methods employed in wastewater samples must be adapted to the distinct characteristics of sludge matrices. In this study, we adapted and applied protocols for the detection of IV and RSV in sewage sludge, comparing their performance with the results obtained in wastewater. To assess the efficiency of these protocols, sludge and wastewater samples were spiked with IV and RSV RNA, either free or incorporated in lentiviral particles. Samples were concentrated using the aluminum hydroxide adsorption-precipitation method before viral RNA extraction. Absolute virus quantification was carried out by RT-qPCR, including an internal control to monitor potential inhibitory factors. Recovery efficiencies for both free IV and RSV RNA were 60 % in sludge, and 75 % and 71 % respectively in wastewater, whereas the values for IV and RSV RNA in lentiviral particles were 16 % and 10 % in sludge and 21 % and 17 % in wastewater respectively. Additionally, the protocol enabled the quantification of naturally occurring IV and RSV in wastewater and sludge samples collected from two wastewater treatment plants during the winter months, thus affirming the efficacy of the employed methodologies.
Collapse
Affiliation(s)
- Daniel Toribio-Avedillo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Belén Galofré
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, General Batet 1-7, Barcelona 08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain.
| |
Collapse
|
10
|
Tran DPH, You BC, Liu CW, Chen YN, Wang YF, Chung SN, Lee JJ, You SJ. Identifying spatiotemporal trends of SARS-CoV-2 RNA in wastewater: from the perspective of upstream and downstream wastewater-based epidemiology (WBE). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11576-11590. [PMID: 38221556 DOI: 10.1007/s11356-023-31769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Recently, many efforts have been made to address the rapid spread of newly identified COVID-19 virus variants. Wastewater-based epidemiology (WBE) is considered a potential early warning tool for identifying the rapid spread of this virus. This study investigated the occurrence of SARS-CoV-2 in eight wastewater treatment plants (WWTPs) and their sewerage systems which serve most of the population in Taoyuan City, Taiwan. Across the entire study period, the wastewater viral concentrations were correlated with the number of COVID-19 cases in each WWTP (Spearman's r = 0.23-0.76). In addition, it is confirmed that several treatment technologies could effectively eliminate the virus RNA from WWTP influent (> 90%). On the other hand, further results revealed that an inverse distance weighted (IDW) interpolation and hotspot model combined with the geographic information system (GIS) method could be applied to analyze the spatiotemporal variations of SARS-CoV-2 in wastewater from the sewer system. In addition, socio-economic factors, namely, population density, land use, and income tax were successfully identified as the potential drivers which substantially affected the onset of the COVID-19 outbreak in Taiwan. Finally, the data obtained from this study can provide a powerful tool in public health decision-making not only in response to the current epidemic situation but also to other epidemic issues in the future.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Bo-Cheng You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Chen-Wuing Liu
- Department of Water Resource, Taoyuan City Government, Taoyuan City, 320, Taiwan, Republic of China
| | - Yi-Ning Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Shu-Nu Chung
- Department of Water Resource, Taoyuan City Government, Taoyuan City, 320, Taiwan, Republic of China
| | - Jin-Jing Lee
- Department of Water Resource, Taoyuan City Government, Taoyuan City, 320, Taiwan, Republic of China
| | - Sheng-Jie You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China.
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China.
| |
Collapse
|
11
|
Long A, Loethen K, Behzadnezhad A, Zhang W. A snapshot of SARS-CoV-2 viral RNA throughout wastewater treatment plants in Arkansas. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10992. [PMID: 38291790 DOI: 10.1002/wer.10992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread the viral RNA in wastewater by the feces of those experience COVID-19 symptoms. While wastewater monitoring of SARS-CoV-2 in the raw sewage has been confirmed as an effective tool to predict COVID-19 infection, the goal of this study is to assess the presence of SARS-CoV-2 viral RNA throughout various wastewater treatment processes. Wastewater samples were collected from wastewater treatment plants (WWTPs) in the state of Arkansas from August 2020 to June 2021 and measured for the relative concentration of SARS-CoV-2 viral RNA using RT-qPCR. The gene concentrations in the raw wastewater measured in this study were similar to other published studies, targeting the N1 and N2 genes of the virus. The viral RNA concentration was measured after each wastewater treatment step within WWTPs, including primary sedimentation, activated sludge, filtration and disinfection. Results show the most viral RNA removal occurred in the secondary treatment (activated sludge). The viral RNA was only occasionally detected after disinfection (chlorination or UV disinfection). Overall, WWTPs can remove the SARS-CoV-2 viral RNA at an average of 98.7%, while complete removal was achieved on 82% of the sampling days. Further investigation is required to ensure complete viral RNA removal from wastewater such as improving existing treatment process or supplementing with additional treatment steps. PRACTITIONER POINTS: The viral RNA of SARS-CoV-2 was detected in Arkansas wastewater treatment plants. SARS-CoV-2 was rarely detected in treated effluent from wastewater treatment plants. Activated sludge was effective removing SARS-CoV-2 viral RNA from wastewater. This study was limited by the direct RNA extraction from wastewater, which lowered the sensitivity of detection.
Collapse
Affiliation(s)
- Aaron Long
- Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Katie Loethen
- Department of Biological Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Asal Behzadnezhad
- Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Wen Zhang
- Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Cutrupi F, Cadonna M, Postinghel M, Foladori P. SARS-CoV-2 removal in municipal wastewater treatment plants: Focus on conventional activated sludge, membrane bioreactor and anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167434. [PMID: 37774861 DOI: 10.1016/j.scitotenv.2023.167434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
This work focuses on the removal of SARS-CoV-2 RNA in the various stages of a full-scale municipal WWTP characterised by two biological processes in parallel: (i) conventional activated sludge (CAS) and (ii) membrane bioreactor (MBR). The monitoring was carried out during the Omicron wave in 2022, a period characterised by a high concentration of SARS-CoV-2 in influent wastewater. The average concentration of SARS-CoV-2 in influent wastewater was 3.7 × 104 GU/L. In the primary sedimentation, the removal of SARS-CoV-2 was not appreciable. The largest log removal value of SARs-CoV-2 occurred in the biological stages, with 1.8 ± 0.9 and 2.2 ± 0.7 logs in CAS and MBR systems. The mean concentrations of SARS-CoV-2 in the CAS and MBR effluents were 6.8 × 102 GU/L and 6.4 × 102 GU/L, respectively. The MBR effluent showed more negative samples, because small particles are retained by membrane and cake layer. The analysis of the different types of sludge confirmed the accumulation of SARS-CoV-2 in primary (5.2 × 104 GU/L) and secondary sludge (3.5 × 104 GU/L), due to the affinity of enveloped viruses towards biosolids. A SARS-CoV-2 concentration in the digested sludge equal to 4.8 × 104 GU/L denotes a negligible reduction in the mesophilic anaerobic digester at temperature of 31-33 °C.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Center Agriculture Food Environment (C3A) - University of Trento, via Edmund Mach 1, 38098 San Michele all' Adige, TN, Italy
| | - Maria Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - Mattia Postinghel
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123 Trento, Italy.
| |
Collapse
|
13
|
Alamin M, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Tanaka H, Watanabe T, Honda R. Reduction of SARS-CoV-2 by biological nutrient removal and disinfection processes in full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165097. [PMID: 37356766 PMCID: PMC10290167 DOI: 10.1016/j.scitotenv.2023.165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; College of Environment, Hohai University, Nanjing 210098, China
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; Faculty of Agriculture and Marine Science, Kochi University, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan.
| |
Collapse
|
14
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
15
|
Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. CHEMOSPHERE 2023; 327:138503. [PMID: 36965534 PMCID: PMC10035368 DOI: 10.1016/j.chemosphere.2023.138503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Mohammad Saud Afzal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
16
|
Pramanik R, Bodawar N, Brahme A, Kamble S, Dharne M. Comparative evaluation of advanced oxidation processes (AOPs) for reducing SARS-CoV-2 viral load from campus sewage water. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109673. [PMID: 36937242 PMCID: PMC10008039 DOI: 10.1016/j.jece.2023.109673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023]
Abstract
Presence of SARS-CoV-2 in wastewater is a major concern as the wastewater meets rivers and other water bodies and is used by the population for various purposes. Hence it is very important to treat sewage water in an efficient manner in order to reduce the public health risk. In the present work, various advanced oxidation processes (AOPs) have been evaluated for disinfection of SARS-CoV-2 from sewage water collected from STP inlet of academic institutional residential. The sewage water was subjected to ten AOPs, which include Ozone (O3), Hydrodynamic cavitation (HC), Ultraviolet radiation (UV), and their hybrid combinations like HC/O3, HC/O3/H2O2, HC/H2O2, O3/UV, UV/H2O2, UV/H2O2/O3, and O3/H2O2 to reduce SARS-CoV-2 viral load. Further, AOP treated sewage water was subjected to total nucleic acid isolation followed by RT-qPCR for viral load estimation. The sewage water treatment techniques were evaluated based on their viral concentration-reducing efficiency. It was found that ozone and ozone-coupled hybrid AOPs showed the most promising result with more than 98 % SARS-CoV-2 viral load reducing efficiency from sewage water. Interestingly, the best six AOPs used in this study significantly reduced both the SARS-CoV-2 and PMMoV (faecal indicator) viral load and improved water quality in terms of increasing DO and decreasing TOC.
Collapse
Affiliation(s)
- Rinka Pramanik
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR, National Chemical Laboratory (NCL), Pune 411008, India
| | - Narendra Bodawar
- Chemical Engineering and Process Development (CEPD) Division, CSIR, National Chemical Laboratory (NCL), Pune 411008, India
| | - Aashay Brahme
- Chemical Engineering and Process Development (CEPD) Division, CSIR, National Chemical Laboratory (NCL), Pune 411008, India
| | - Sanjay Kamble
- Chemical Engineering and Process Development (CEPD) Division, CSIR, National Chemical Laboratory (NCL), Pune 411008, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR, National Chemical Laboratory (NCL), Pune 411008, India
| |
Collapse
|
17
|
Bhatt A, Dada AC, Prajapati SK, Arora P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160842. [PMID: 36509266 DOI: 10.1016/j.scitotenv.2022.160842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
18
|
Câmara AB, Bonfante J, da Penha MG, Cassini STA, de Pinho Keller R. Detecting SARS-CoV-2 in sludge samples: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160012. [PMID: 36368397 PMCID: PMC9643039 DOI: 10.1016/j.scitotenv.2022.160012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
AIMS This paper aims to review the main sludge concentration methods used for SARS-CoV-2 detection in sewage sludge samples, discussing the main methods and sample volume related to increased viral load. In addition, we aim to evaluate the countries associated with increased positivity rates for SARS-CoV-2 in sludge samples. METHODS This systematic methodology was registered in PROSPERO and followed the PRISMA guidelines. The search was carried out in the SciELO, PubMed/MEDLINE, Lilacs, and Google Scholar databases in January-March 2022. Quantitative studies with conclusive results were included in this review. Concentration methods (polyethylene glycol (PEG), PEG + NaCl, gravity thickening, skimmed milk flocculation, ultrafiltration, filtration using charged filters, primary sedimentation, and anaerobic digestion), as well as detection methods (RTqPCR and reverse transcription droplet digital PCR assay) were evaluated in this review. The SPSS v23 software program was used for statistical analysis. RESULTS PEG (with or without NaCl addition) and gravity thickening were the most used sludge concentration methods to detect SARS-CoV-2. The main method associated with increased viral load (>2,02 × 10^4 copies/mL) was PEG + NaCl (p < 0.05, Mann-Whitney test). The average positivity rate for SARS-CoV-2 in sludge samples was 61 %, and a correlation was found between the sludge volume and the viral load (ro 0.559, p = 0.03, Spearman correlation). CONCLUSION The sludge volume may influence the SARS-CoV-2 load since the virus can adhere to solid particles in these samples. Other factors may be associated with SARS-CoV-2 load, including the methods used; especially PEG + NaCl may result in a high viral load detected in sludge, and may provide a suitable pH for SARS-CoV-2 recovery.
Collapse
Affiliation(s)
- Alice Barros Câmara
- Sanitation Laboratory, Department of Environmental Engineering, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 515, Goiabeiras, 29075051 Vitória, ES, Brazil.
| | - Júlia Bonfante
- Sanitation Laboratory, Department of Environmental Engineering, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 515, Goiabeiras, 29075051 Vitória, ES, Brazil
| | - Marília Gueler da Penha
- Sanitation Laboratory, Department of Environmental Engineering, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 515, Goiabeiras, 29075051 Vitória, ES, Brazil
| | - Sérvio Túlio Alves Cassini
- Sanitation Laboratory, Department of Environmental Engineering, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 515, Goiabeiras, 29075051 Vitória, ES, Brazil
| | - Regina de Pinho Keller
- Sanitation Laboratory, Department of Environmental Engineering, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 515, Goiabeiras, 29075051 Vitória, ES, Brazil
| |
Collapse
|
19
|
Wang Y, Fang W, Wang X, Zhou L, Zheng G. Spatial distribution of fecal pollution indicators in sewage sludge flocs and their removal and inactivation as revealed by qPCR/viability-qPCR during potassium ferrate treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130262. [PMID: 36327846 DOI: 10.1016/j.jhazmat.2022.130262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Sludge reuse and utilization is one of important routines of disseminating fecal pollution to surface water and groundwater. However, it remains unclear the spatial distribution of fecal pollution indicators in sludge flocs and their reductions during sludge treatment processes. In this study, the abundances of fecal pollution indicators including cross-assembly phage (crAssphage), JC and BK polyomavirus (JCPyV, BKPyV), human adenovirus (HAdV), the human-specific HF183 Bacteroides (HF183) and Escherichia coli (EC) in soluble extracellular polymeric substances (S-EPS), loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS), and pellets of sludge flocs were determined, and the effect of potassium ferrate (PF) treatment on their removal and inactivation was investigated by using both qPCR and viability-qPCR. Results showed that all investigated indicators were detected in each fraction of sludge flocs. The PF treatment led to a great migration of indicators from sludge pellets to sludge EPS and some extent of their inactivation in each fraction of sludge flocs. The overall reductions of human fecal indicators in sludge determined by qPCR were 0-1.30 logs, which were 0-2 orders of magnitude lower than those of 0.69-2.39 logs detected by viability-qPCR, implying their inactivation by PF treatment to potentially alleviate the associated human health risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Wenhao Fang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
20
|
Ekanayake A, Rajapaksha AU, Hewawasam C, Anand U, Bontempi E, Kurwadkar S, Biswas JK, Vithanage M. Environmental challenges of COVID-19 pandemic: resilience and sustainability - A review. ENVIRONMENTAL RESEARCH 2023; 216:114496. [PMID: 36257453 PMCID: PMC9576205 DOI: 10.1016/j.envres.2022.114496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 05/05/2023]
Abstract
The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Choolaka Hewawasam
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
21
|
Zahmatkesh S, Rezakhani Y, Chofreh AG, Karimian M, Wang C, Ghodrati I, Hasan M, Sillanpaa M, Panchal H, Khan R. SARS-CoV-2 removal by mix matrix membrane: A novel application of artificial neural network based simulation in MATLAB for evaluating wastewater reuse risks. CHEMOSPHERE 2023; 310:136837. [PMID: 36252897 PMCID: PMC9560862 DOI: 10.1016/j.chemosphere.2022.136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran; Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Melika Karimian
- Faculty of Civil Engineering, Architecture and Urban Planning, University of Eyvanekey, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Mudassir Hasan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Hitesh Panchal
- Mechanical Engineering Department, Government Engineering College, Patan, Gujarat, India
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India
| |
Collapse
|
22
|
Wang R, Alamin M, Tsuji S, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Honda R. Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158310. [PMID: 36030862 PMCID: PMC9411102 DOI: 10.1016/j.scitotenv.2022.158310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shohei Tsuji
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Japan
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan.
| |
Collapse
|
23
|
Brian I, Manuzzi A, Dalla Rovere G, Giussani E, Palumbo E, Fusaro A, Bonfante F, Bortolami A, Quaranta EG, Monne I, Patarnello T, Bargelloni L, Terregino C, Holmes EC, Todesco G, Sorrentino F, Berton A, Badetti C, Carrer C, Ferrari G, Zincone C, Milan M, Panzarin V. Molecular Monitoring of SARS-CoV-2 in Different Sewage Plants in Venice and the Implications for Genetic Surveillance. ACS ES&T WATER 2022; 2:1953-1963. [PMID: 37552713 PMCID: PMC9115883 DOI: 10.1021/acsestwater.2c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 05/20/2023]
Abstract
Wastewater-based epidemiology is now widely used as an indirect tool to monitor the spread of SARS-CoV-2. In this study, five different sample matrices representing diverse phases of the wastewater treatment process were collected during the second wave of SARS-CoV-2 from two wastewater treatment plants (WWTPs) serving the Civil Hospital and Sacca Fisola island in Venice, Italy. Positive SARS-CoV-2 detections occurred at both WWTPs, and data on viral genome detection rate and quantification suggest that the pellet (i.e., the particulate resulting from the influent) is a sensitive matrix that permits reliable assessment of infection prevalence while reducing time to results. On the contrary, analysis of post-treatment matrices provides evidence of the decontamination efficacy of both WWTPs. Finally, direct sequencing of wastewater samples enabled us to identify B.1.177 and B.1.160 as the prevalent SARS-CoV-2 lineages circulating in Venice at the time of sampling. This study confirmed the suitability of wastewater testing for studying SARS-CoV-2 circulation and established a simplified workflow for the prompt detection and characterization of the virus.
Collapse
Affiliation(s)
- Irene Brian
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Alice Manuzzi
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Edoardo Giussani
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Elisa Palumbo
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Alice Fusaro
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Francesco Bonfante
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Alessio Bortolami
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Erika Giorgia Quaranta
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Isabella Monne
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Calogero Terregino
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life
and Environmental Sciences and School of Medical Sciences, University of
Sydney, Sydney 2006, Australia
| | | | - Francesco Sorrentino
- Provveditorato interregionale per il
Veneto, Trentino AA, Friuli Venezia Giulia, Ponte di Rialto, 19, Venezia,
30125, Italy
| | | | | | | | | | - Cinzia Zincone
- Provveditorato interregionale per il
Veneto, Trentino AA, Friuli Venezia Giulia, Ponte di Rialto, 19, Venezia,
30125, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food
Science, University of Padova, Viale
dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Valentina Panzarin
- Division of Comparative Biomedical Sciences,
Istituto Zooprofilattico Sperimentale delle Venezie, Viale
dell’Università 10, 35020 Legnaro, Padova, Italy
| |
Collapse
|
24
|
Guérin-Rechdaoui S, Bize A, Levesque-Ninio C, Janvier A, Lacroix C, Le Brizoual F, Barbier J, Amsaleg CR, Azimi S, Rocher V. Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:114057. [PMID: 35995225 PMCID: PMC9391084 DOI: 10.1016/j.envres.2022.114057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.
Collapse
Affiliation(s)
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, Antony, 92160, France
| | - Camille Levesque-Ninio
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Alice Janvier
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Carlyne Lacroix
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Florence Le Brizoual
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Jérôme Barbier
- ID Solutions, Development Department, Grabels, 34790, France
| | | | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Vincent Rocher
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| |
Collapse
|
25
|
Ye Y, Hao Ngo H, Guo W, Woong Chang S, Duc Nguyen D, Fu Q, Wei W, Ni B, Cheng D, Liu Y. A critical review on utilization of sewage sludge as environmental functional materials. BIORESOURCE TECHNOLOGY 2022; 363:127984. [PMID: 36126850 DOI: 10.1016/j.biortech.2022.127984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge (SS) is increasingly used as an environment functional material to reduce or control pollution and improve plant growth because of the large amounts of carbon and essential plant nutrients in it. To achieve the best application results, it is essential to comprehensively review recent progress in SS utilization. This review aims to fill the gaps in knowledge by describing the properties of SS, and its usage as adsorbents, catalysts and fertilizers, and certain application mechanisms. Although SS generates several benefits for the environment and humans, many challenges still exist to limit the application, including the risks posed by potentially toxic substances (e.g., heavy metals) in SS. Therefore, future research directions are discussed and how to make SS applications more feasible in terms of technology and economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Qiang Fu
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Bingjie Ni
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
26
|
Cimolai N. Disinfection and decontamination in the context of SARS-CoV-2-specific data. J Med Virol 2022; 94:4654-4668. [PMID: 35758523 PMCID: PMC9350315 DOI: 10.1002/jmv.27959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineChildren's and Women's Health Centre of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
27
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Zahmatkesh S, Klemeš JJ, Bokhari A, Wang C, Sillanpaa M, Hasan M, Amesho KTT. Critical role of Hyssop plant in the possible transmission of SARS-CoV-2 in contaminated human Feces and its implications for the prevention of the virus spread in sewage. CHEMOSPHERE 2022; 305:135247. [PMID: 35688196 PMCID: PMC9173688 DOI: 10.1016/j.chemosphere.2022.135247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/09/2023]
Abstract
The significant issue affecting wastewater treatment is human faeces containing SARS-CoV-2. SARS-CoV-2, as a novel coronavirus, has expanded globally. While the current focus on the COVID-19 epidemic is rightly on preventing direct transmission, the risk of secondary transmission via wastewater should not be overlooked. Many researchers have demonstrated various methods and tools for preventing and declining this virus in wastewater treatment, especially for SARS-CoV-2 in human faeces. This research reports two people tested for 30 d, with written consent, at Mosa-Ebne-Jafar Hospital of Quchan, Iran, from September 1st to October 9th, 2021. The two people's conditions are the same. The Hyssop plant was used, which boosts the immune system's effectiveness and limonene, rosemary, caffeic acids and flavonoids, all biologically active compounds in this plant, cause improved breathing problems, colds, and especially for SARS-CoV-2. As a result, utilising the Hyssop plant can help in reducing SARS-CoV-2 in faeces. This plant's antioxidant properties effectively reduce SARS-CoV-2 in faeces by 30%; nevertheless, depending on the patient's condition. This plant is also beneficial for respiratory and digestive health.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Mudassir Hasan
- College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| |
Collapse
|
29
|
Boni M, Gorgé O, Mullot JU, Wurtzer S, Moulin L, Maday Y, Obépine G, Canini F, Chantre M, Teyssou R, Maréchal V, Janvier F, Tournier JN. [The French Armed Forces Biomedical Research Institute (IRBA) and wastewater-based epidemiology: Applicability and relevance in armed forces]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2022; 206:1011-1021. [PMID: 36778592 PMCID: PMC9906811 DOI: 10.1016/j.banm.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
The French Armed Forces Biomedical Research Institute (IRBA) deeply involved in research on SARS-COV-2, participated in the creation of the Obépine sentinel network in charge of detecting, qualifying and quantifying the virus genome in wastewater in France. During this pandemic, wastewater-based epidemiology has proven to be a first class public health tool for assessing viral dynamics in populations and environment. Obépine has also conducted research demonstrating the low infectivity of faeces and wastewater and allowed for early detection of epidemic waves linked to new variants. The IRBA has adapted this powerful tool to the monitoring of viral infections on board the aircraft carrier Charles-de-Gaulle in order to get an operational system for anticipation after the first local outbreak in 2020. The presence of this surveillance and anticipation tool has allowed a better management of SARS-CoV-2 contingent introductions on board during stopovers or crewmembers entries. The combination of a mandatory vaccination protocol and the surveillance of viral circulation in black waters has made it possible to identify and locate cases, and thus to continue the operational mission in the COVID-19 environment while limiting the spread and preserving the health of the crew. This innovative tool can easily be redirected to the search for any other pathogens in blackwater or even, in the long term, to ensure health surveillance of any military establishment, at sea or on land, in France or on overseas bases.
Collapse
Affiliation(s)
- M Boni
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- Groupement d'intérêt scientifique Obépine, France
| | - O Gorgé
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
| | - J-U Mullot
- Laboratoire d'analyses de surveillance et d'expertise de la Marine, 83000 Toulon, France
- Laboratoire d'analyses de surveillance et d'expertise de la Marine, 83000 Toulon, France
| | - S Wurtzer
- Eau de Paris, département de recherche, développement et qualité de l'eau, 33, avenue Jean-Jaurès, 94200 Ivry-sur-Seine, France
- Groupement d'intérêt scientifique Obépine, France
| | - L Moulin
- Eau de Paris, département de recherche, développement et qualité de l'eau, 33, avenue Jean-Jaurès, 94200 Ivry-sur-Seine, France
- Groupement d'intérêt scientifique Obépine, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), Institut universitaire de France, 75005 Paris, France
- Groupement d'intérêt scientifique Obépine, France
| | - Gis Obépine
- Groupement d'intérêt scientifique Obépine, France
| | - F Canini
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75005 Paris, France
| | - M Chantre
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
| | - R Teyssou
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75005 Paris, France
- Groupement d'intérêt scientifique Obépine, France
| | - V Maréchal
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine, 75012 Paris, France
- Groupement d'intérêt scientifique Obépine, France
| | - F Janvier
- Hôpital d'instruction des armées Sainte-Anne, service de microbiologie et hygiène hospitalière, 83000 Toulon, France
| | - J-N Tournier
- Institut de recherche biomédicale des armées, 1, place Valérie-André, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
30
|
Covid-19: Early Cases and Disease Spread. Ann Glob Health 2022; 88:83. [PMID: 36247198 PMCID: PMC9524236 DOI: 10.5334/aogh.3776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence and global spread of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is critical to understanding how to prevent or control a future viral pandemic. We review the tools used for this retrospective search, their limits, and results obtained from China, France, Italy and the USA. We examine possible scenarios for the emergence of SARS-CoV-2 in the human population. We consider the Chinese city of Wuhan where the first cases of atypical pneumonia were attributed to SARS-CoV-2 and from where the disease spread worldwide. Possible superspreading events include the Wuhan-based 7th Military World Games on October 18–27, 2019 and the Chinese New Year holidays from January 25 to February 2, 2020. Several clues point to an early regional circulation of SARS-CoV-2 in northern Italy (Lombardi) as soon as September/October 2019 and in France in November/December 2019, if not before. With the goal of preventing future pandemics, we call for additional retrospective studies designed to trace the origin of SARS-CoV-2.
Collapse
|
31
|
Roman MD, Sava C, Iluțiu-Varvara DA, Mare R, Pruteanu LL, Pică EM, Jäntschi L. Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11323. [PMID: 36141596 PMCID: PMC9517470 DOI: 10.3390/ijerph191811323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic and the related measures brought a change in daily life that affected the characteristics of the municipal wastewater and further, of the biological activated sludge. The activated sludge process is the most widely used biological wastewater treatment process in developed areas. In this paper, we aim to show the situation of specific investigations concerning the variation of the physicochemical parameters and biological composition of the activated sludge from one conventional wastewater treatment plant from a metropolitan area. The investigations were carried out for three years: 2019, 2020 and 2021. The results showed the most representative taxa of microorganisms: Microtrix, Aspidisca cicada, Vorticella convallaria, Ciliata free of the unknown and Epistylis and Rotifers. Even if other microorganisms were found in the sludge flocs, their small presence did not influence in any way the quality of the activated sludge and of the wastewater treatment process. That is why we conclude that protozoa (especially Flagellates and Ciliates) and rotifers were the most important. Together with the values and variation of the physicochemical parameters, they indicated a good, healthy, and stable activated sludge, along with an efficient purifying treatment process, no matter the loading conditions.
Collapse
Affiliation(s)
- Marius-Daniel Roman
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Cornel Sava
- Faculty of Engineering Materials and the Environment, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Dana-Adriana Iluțiu-Varvara
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Roxana Mare
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Elena Maria Pică
- Faculty of Engineering Materials and the Environment, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Lorentz Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 103-105 Bd. Muncii, 400641 Cluj-Napoca, Romania
- Institute for Doctoral Studies, Babes-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Viveros ML, Azimi S, Pichon E, Roose-Amsaleg C, Bize A, Durandet F, Rocher V. Wild type and variants of SARS-COV-2 in Parisian sewage: presence in raw water and through processes in wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67442-67449. [PMID: 36029443 PMCID: PMC9418656 DOI: 10.1007/s11356-022-22665-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/18/2022] [Indexed: 05/30/2023]
Abstract
The presence of SARS-CoV-2 RNA has been extensively reported at the influent of wastewater treatment plants (WWTPs) worldwide, and its monitoring has been proposed as a potential surveillance tool to early alert of epidemic outbreaks. However, the fate of the SARS-CoV-2 RNA in the treatment process of WWTP has not been widely studied yet; therefore, in this study, we aimed to evaluate the efficiency of treatment processes in reducing SARS-CoV-2 RNA levels in wastewater. The treatment process of three WWTPs of the Parisian area in France was monitored on six different weeks over a period of 2 months (from April 14 to June 9, 2021). SARS-CoV-2 RNA copies were detected using digital polymerase chain reaction (dPCR). Investigation on the presence of variants of concern (Del69-70, E484K, and L452R) was also performed. Additionally, SARS-CoV-2 RNA loads in the WWTPs influents were expressed as the viral concentration in per population equivalent (PE) and showed a good correlation with French public health indicators (incidence rate). SARS-CoV-2 RNA loads were notably reduced along the water treatment lines of the three WWTPs studied (2.5-3.4 log reduction). Finally, very low SARS-CoV-2 RNA loads were detected in effluents (non-detected in over half of the samples) which indicated that the potential risk of the release of wastewater effluents to the environment is probably insignificant, in the case of WWTPs enabling an efficient biological removal of nitrogen.
Collapse
Affiliation(s)
| | - Sam Azimi
- SIAAP - Direction Innovation, 82 avenue Kléber, 92700, Colombes, France
| | - Elodie Pichon
- GEOBIOMICS, 335 rue Louis Lépine, 34000, Montpellier, France
| | | | - Ariane Bize
- PRocédés biOtechnologiques Au Service de L'Environnement, INRAE Université Paris-Saclay, INRAE, 92761, Antony, France
| | | | - Vincent Rocher
- SIAAP - Direction Innovation, 82 avenue Kléber, 92700, Colombes, France
| |
Collapse
|
33
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
34
|
Novoa B, Ríos-Castro R, Otero-Muras I, Gouveia S, Cabo A, Saco A, Rey-Campos M, Pájaro M, Fajar N, Aranguren R, Romero A, Panebianco A, Valdés L, Payo P, Alonso AA, Figueras A, Cameselle C. Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155140. [PMID: 35421481 PMCID: PMC8996449 DOI: 10.1016/j.scitotenv.2022.155140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days. Moreover, the study shows that the viral load was eliminated from the treated sewage water in the WWTP, mainly in the biological reactors and the disinfection system. As a result, we detected a minor impact of the virus in the marine environment through the analysis of seawater, marine sediments and, wild and aquacultured mussels in the final discharge point of the WWTP.
Collapse
Affiliation(s)
- Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Irene Otero-Muras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; Institute for Integrative Systems Biology I2SYSBIO (UV, CSIC), Spanish National Research Council, 46980 València, Spain
| | - Susana Gouveia
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain; GESECO Aguas S.A. Vigo, Spain
| | - Amaro Saco
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Magalí Rey-Campos
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Manuel Pájaro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; CITIC Research Center, Department of Applied Mathematics, University of A Coruña, 15071 A Coruña, Spain
| | - Noelia Fajar
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Raquel Aranguren
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Alejandro Romero
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Antonella Panebianco
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Lorena Valdés
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | | | - Antonio A Alonso
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| |
Collapse
|
35
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
36
|
Gholipour S, Ghalhari MR, Nikaeen M, Rabbani D, Pakzad P, Miranzadeh MB. Occurrence of viruses in sewage sludge: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153886. [PMID: 35182626 PMCID: PMC8848571 DOI: 10.1016/j.scitotenv.2022.153886] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 05/04/2023]
Abstract
Enteric viruses are of great importance in wastewater due to their high excretion from infected individuals, low removal in wastewater treatment processes, long-time survival in the environment, and low infectious dose. Among the other viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surveillance in wastewater systems has received particular attention as a result of the current COVID-19 epidemic. Viruses adhering to solid particles in wastewater treatment processes will end up as sewage sludge, and therefore insufficient sludge treatment may result in viral particles dissemination into the environment. Here, we review data on viruses' presence in sewage sludge, their detection and concentration methods, and information on human health issues associated with sewage sludge land application. We used combinations of the following keywords in the Scopus, Web of Science (WOS), and PubMed databases, which were published between 2010 and January 21th, 2022: sludge (sewage sludge, biosolids, sewage solids, wastewater solids) and virus (enteric virus, viral particles, viral contamination, SARS-CoV-2, coronavirus). The sources were searched twice, once with and then without the common enteric virus names (adenovirus, rotavirus, norovirus, enterovirus, hepatitis A virus). Studies suggest adenovirus and norovirus as the most prevalent enteric viruses in sewage sludge. Indeed, other viruses include rotavirus, hepatitis A virus, and enterovirus were frequently found in sewage sludge samples. Untreated biological sludge and thickened sludge showed more viral contamination level than digested sludge and the lowest prevalence of viruses was reported in lime stabilized sludge. The review reveals that land application of sewage sludge may pose viral infection risks to people due to accidently ingestion of sludge or intake of crops grown in biosolids amended soil. Moreover, contamination of groundwater and/or surface water may occur due to land application of sewage sludge.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Parichehr Pakzad
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagher Miranzadeh
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Alhama J, Maestre JP, Martín MÁ, Michán C. Monitoring COVID-19 through SARS-CoV-2 quantification in wastewater: progress, challenges and prospects. Microb Biotechnol 2022; 15:1719-1728. [PMID: 34905659 PMCID: PMC9151337 DOI: 10.1111/1751-7915.13989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of the current SARS-CoV-2 pandemic at local levels. In this review, we address the different approaches to the steps needed for this surveillance: sampling wastewaters (WWs), concentrating the virus from the samples and quantifying them by qPCR, focusing on the main limitations of the methodologies used. Factors that can influence SARS-CoV-2 monitoring in WWs include: (i) physical parameters as temperature that can hamper the detection in warm seasons and tropical regions, (ii) sampling methodologies and timetables, being composite samples and Moore swabs the less variable and more sensitive approaches, (iii) virus concentration methodologies that need to be feasible and practicable in simpler laboratories and (iv) detection methodologies that should tend to use faster and cost-effective procedures. The efficiency of WW treatments and the use of WWs for SARS-CoV-2 variants detection are also addressed. Furthermore, we discuss the need for the development of common standardized protocols, although these must be versatile enough to comprise variations among target communities. WBE screening of risk populations will allow for the prediction of future outbreaks, thus alerting authorities to implement early action measurements.
Collapse
Affiliation(s)
- José Alhama
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| | - Juan P. Maestre
- Department of Civil, Architectural, and Environmental EngineeringThe University of Texas at Austin301 E. Dean Keeton St., Stop C1786AustinTX78712USA
| | - M. Ángeles Martín
- Department of Inorganic Chemistry and Chemical EngineeringArea of Chemical EngineeringUniversidad de CórdobaInstitute of Fine Chemistry and Nanochemistry (IUNAN)Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie CurieCórdoba14071Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| |
Collapse
|
38
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
39
|
Gomes M, Bartolomeu M, Vieira C, Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety. Microorganisms 2022; 10:659. [PMID: 35336234 PMCID: PMC8954818 DOI: 10.3390/microorganisms10030659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
The last two years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract; it reaches wastewater systems and, consequently, the natural receiving water bodies. As such, inefficiently treated wastewater (WW) can be a means of contamination. The currently used methods for the disinfection of WW can lead to the formation of toxic compounds and can be expensive or inefficient. As such, new and alternative approaches must be considered, namely, photodynamic inactivation (PDI). In this work, the bacteriophage φ6 (or, simply, phage φ6), which has been used as a suitable model for enveloped RNA viruses, such as coronaviruses (CoVs), was used as a model of SARS-CoV-2. Firstly, to understand the virus's survival in the environment, phage φ6 was subjected to different laboratory-controlled environmental conditions (temperature, pH, salinity, and solar and UV-B irradiation), and its persistence over time was assessed. Second, to assess the efficiency of PDI towards the virus, assays were performed in both phosphate-buffered saline (PBS), a commonly used aqueous matrix, and a secondarily treated WW (a real WW matrix). Third, as WW is generally discharged into the marine environment after treatment, the safety of PDI-treated WW was assessed through the determination of the viability of native marine water microorganisms after their contact with the PDI-treated effluent. Overall, the results showed that, when used as a surrogate for SARS-CoV-2, phage φ6 remains viable in different environmental conditions for a considerable period. Moreover, PDI proved to be an efficient approach in the inactivation of the viruses, and the PDI-treated effluent showed no toxicity to native aquatic microorganisms under realistic dilution conditions, thus endorsing PDI as an efficient and safe tertiary WW disinfection method. Although all studies were performed with phage φ6, which is considered a suitable model of SARS-CoV-2, further studies using SARS-CoV-2 are necessary; nevertheless, the findings show the potential of PDI for controlling SARS-CoV-2 in WW.
Collapse
Affiliation(s)
- Marta Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Ana T. P. C. Gomes
- Center for Interdisciplinary Investigation (CIIS), Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | | | | | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| |
Collapse
|
40
|
Sangsanont J, Rattanakul S, Kongprajug A, Chyerochana N, Sresung M, Sriporatana N, Wanlapakorn N, Poovorawan Y, Mongkolsuk S, Sirikanchana K. SARS-CoV-2 RNA surveillance in large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in Bangkok, Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151169. [PMID: 34699826 PMCID: PMC8540006 DOI: 10.1016/j.scitotenv.2021.151169] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 05/07/2023]
Abstract
Wastewater surveillance for SARS-CoV-2 RNA has been a successful indicator of COVID-19 outbreaks in populations prior to clinical testing. However, this has been mostly conducted in high-income countries, which means there is a dearth of performance investigations in low- and middle-income countries with different socio-economic settings. This study evaluated the applicability of SARS-CoV-2 RNA monitoring in wastewater (n = 132) to inform COVID-19 infection in the city of Bangkok, Thailand using CDC N1 and N2 RT-qPCR assays. Wastewater influents (n = 112) and effluents (n = 20) were collected from 19 centralized wastewater treatment plants (WWTPs) comprising four large, four medium, and 11 small WWTPs during seven sampling events from January to April 2021 prior to the third COVID-19 resurgence that was officially declared in April 2021. The CDC N1 assay showed higher detection rates and mostly lower Ct values than the CDC N2. SARS-CoV-2 RNA was first detected at the first event when new reported cases were low. Increased positive detection rates preceded an increase in the number of newly reported cases and increased over time with the reported infection incidence. Wastewater surveillance (both positive rates and viral loads) showed strongest correlation with daily new COVID-19 cases at 22-24 days lag (Spearman's Rho = 0.85-1.00). Large WWTPs (serving 432,000-580,000 of the population) exhibited similar trends of viral loads and new cases to those from all 19 WWTPs, emphasizing that routine monitoring of the four large WWTPs could provide sufficient information for the city-scale dynamics. Higher sampling frequency at fewer sites, i.e., at the four representative WWTPs, is therefore suggested especially during the subsiding period of the outbreak to indicate the prevalence of COVID-19 infection, acting as an early warning of COVID-19 resurgence.
Collapse
Affiliation(s)
- Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Nonnarit Sriporatana
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
41
|
Pourakbar M, Abdolahnejad A, Raeghi S, Ghayourdoost F, Yousefi R, Behnami A. Comprehensive investigation of SARS-CoV-2 fate in wastewater and finding the virus transfer and destruction route through conventional activated sludge and sequencing batch reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151391. [PMID: 34740662 PMCID: PMC8563086 DOI: 10.1016/j.scitotenv.2021.151391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 05/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA transmission route was thoroughly investigated in the hospital wastewater, sewage collection network, and wastewater treatment plants. Samples were taken on four occasions from December 2020 to April 2021. The performance of two different wastewater treatment processes of sequencing batch reactor (SBR) and conventional activated sludge (CAS) was studied for virus destruction. For this purpose, liquid phase, solid phase and bioaerosol samples were taken from different units of the investigated wastewater treatment plants (WWTPs). The results revealed that all untreated hospital wastewater samples were positive for SARS-CoV-2 RNA. The virus detection frequency increased when the number of hospitalized cases increased. Detection of viral RNA in the wastewater collection system exhibited higher load of virus in the generated wastewater in areas with poor socioeconomic conditions. Virus detection in the emitted bioaerosols in WWTPs showed that bioaerosols released from CAS with surface aeration contains SARS-CoV-2 RNA posing a potential threat to the working staff of the WWTPs. However, no viral RNA was detected in the bioaerosols of the SBR with diffused aeration system. Investigation of SARS-CoV-2 RNA in WWTPs showed high affinity of the virus to be accumulated in biosolids rather than transporting via liquid phase. Following the fate of virus in sludge revealed that it is completely destructed in anaerobic sludge treatment process. Therefore, based on the results of the present study, it can be concluded that receiving water resources could not be contaminated with virus, if the wastewater treatment processes work properly.
Collapse
Affiliation(s)
- Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Saber Raeghi
- Department of Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Farhad Ghayourdoost
- Department of Environmental Health Engineering, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Roghayeh Yousefi
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
42
|
Hoang SA, Bolan N, Madhubashani AMP, Vithanage M, Perera V, Wijesekara H, Wang H, Srivastava P, Kirkham MB, Mickan BS, Rinklebe J, Siddique KHM. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118564. [PMID: 34838711 DOI: 10.1016/j.envpol.2021.118564] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.
Collapse
Affiliation(s)
- Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - A M P Madhubashani
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Vishma Perera
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia, 5064, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|