1
|
Lucena T, Pujalte MJ, Arahal DR. Dyadobacter helix sp. nov. and Dyadobacter linearis sp. nov., from drinking water. Int J Syst Evol Microbiol 2024; 74:006570. [PMID: 39556500 PMCID: PMC11573002 DOI: 10.1099/ijsem.0.006570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
The purpose of this study is to better characterize and complete the classification of two bacterial strains, CECT 9275T and CECT 9623T, isolated from drinking water systems and affiliated to the genus Dyadobacter by partial 16S rRNA gene sequence comparison. Hence, we report here the phenotypic, genomic and phylogenetic characterization performed on these strains. Both strains grow on R2A agar forming mucous, bright yellow colonies, developing at 26 °C in 48 h. They produce flexirubin and are oxidase and catalase positive, mesophilic and non-halophilic. The cells of strain CECT 9275T are curved rods mainly associated in pairs, forming nearly closed rings or resembling the shape of the number three, to long spirals resembling a corkscrew. Its draft genome has an estimated size of 7.23 Mbp (G+C content 45.4%). Strain CECT 9623T appeared on wet mounts as straight rods, mostly in pairs, sometimes forming long filaments (up to 20 µm). Its draft genome is shorter, with an estimated size of 6.45 Mbp (G+C content is 46.1%). Overall genome relatedness indexes clearly define them as separate organisms, so based on all the data collected, we propose the species Dyadobacter helix sp. nov. with type strain AB1T (=CECT 9275T=LMG 32341T) and Dyadobacter linearis sp. nov. with type strain AB67T (=CECT 9623T=LMG 32342T).
Collapse
Affiliation(s)
- Teresa Lucena
- Departamento de Microbiología y Ecología, Universitat de València, Spain
| | - María J. Pujalte
- Departamento de Microbiología y Ecología, Universitat de València, Spain
| | - David R. Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Spain
| |
Collapse
|
2
|
Pluym T, Waegenaar F, De Gusseme B, Boon N. Microbial drinking water monitoring now and in the future. Microb Biotechnol 2024; 17:e14532. [PMID: 39051617 PMCID: PMC11270321 DOI: 10.1111/1751-7915.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Over time, humanity has addressed microbial water contamination in various ways. Historically, individuals resorted to producing beer to combat the issue. Fast forward to the 19th century, and we witnessed a scientific approach by Robert Koch. His groundbreaking gelatine plating method aimed to identify and quantify bacteria, with a proposed limit of 100 colony-forming units per millilitre (CFU/mL) to avoid Cholera outbreaks. Despite considerable advancements in plating techniques through experimentation with media compositions and growth temperatures, the reliance on a century-old method for water safety remains the state-of-the-art. Even though most countries succeed in producing qualitative water at the end of the production centres, it is difficult to control, and guarantee, the same quality during distribution. Rather than focusing solely on specific sampling points, we propose a holistic examination of the entire water network to ensure comprehensive safety. Current practices leave room for uncertainties, especially given the low concentrations of pathogens. Innovative methods like flow cytometry and flow cytometric fingerprinting offer the ability to detect changes in the microbiome of drinking water. Additionally, molecular techniques and emerging sequencing technologies, such as third-generation sequencing (MinION), mark a significant leap forward, enhancing detection limits and emphasizing the identification of unwanted genes rather than the unwanted bacteria/microorganisms itself. Over the last decades, there has been the realization that the drinking water distribution networks are complex ecosystems that, beside bacteria, comprise of viruses, protozoans and even isopods. Sequencing techniques to find eukaryotic DNA are necessary to monitor the entire microbiome of the drinking water distribution network. Or will artificial intelligence, big data and machine learning prove to be the way to go for (microbial) drinking water monitoring? In essence, it is time to transcend century-old practices and embrace modern technologies to ensure the safety of our drinking water from production to consumption.
Collapse
Affiliation(s)
- Thomas Pluym
- Center for Microbial Ecology and Technology (CMET), Department of BiotechnologyGhent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
| | - Fien Waegenaar
- Center for Microbial Ecology and Technology (CMET), Department of BiotechnologyGhent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
| | - Bart De Gusseme
- Center for Microbial Ecology and Technology (CMET), Department of BiotechnologyGhent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
- Farys, Department R&D – Innovation WaterGhentBelgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of BiotechnologyGhent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
| |
Collapse
|
3
|
Bielen A, Babić I, Vuk Surjan M, Kazazić S, Šimatović A, Lajtner J, Udiković-Kolić N, Mesić Z, Hudina S. Comparison of MALDI-TOF mass spectrometry and 16S rDNA sequencing for identification of environmental bacteria: a case study of cave mussel-associated culturable microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21752-21764. [PMID: 38393570 DOI: 10.1007/s11356-024-32537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.
Collapse
Affiliation(s)
- Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ivana Babić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Marija Vuk Surjan
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Ana Šimatović
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Jasna Lajtner
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Zrinka Mesić
- Oikon Ltd., Trg Senjskih Uskoka 1-2, 10020, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
4
|
Madsen AM, Uhrbrand K, Kofoed VC, Fischer TK, Frederiksen MW. A cohort study of wastewater treatment plant workers: Association between levels of biomarkers of systemic inflammation and exposure to bacteria and fungi, and endotoxin as measured using two methods. WATER RESEARCH 2023; 231:119625. [PMID: 36680819 DOI: 10.1016/j.watres.2023.119625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Work in wastewater treatment plants (WWTPs) can be associated with exposure to airborne microorganisms and endotoxin from the working environment. The aim of this study was to obtain knowledge about whether serum levels of the markers of systemic inflammation, C-reactive protein (CRP) and serum amyloid A (SAA), are associated with personal exposure to endotoxin, measured using the Limulus (endotoxinLimulus) and the rFC (endotoxinrFC) assays, as well as bacteria and fungi in a cohort of WWTP workers. Exposure and blood samples were collected for 11 workers over one year. Exposure to endotoxinLimulus-day and endotoxinrFC-day correlated significantly (r = 0.80, p<0.0001, n = 104), but endotoxinLimulus-day was 4.4 (Geometric mean (GM) value) times higher than endotoxinrFC-day (p<0.0001). The endotoxinLimulus-day, endotoxinrFC-day, bacteria, and fungal exposure as well as serum levels of CRP-day (GM=1.4 mg/l) and SAA-day (GM=12 mg/l) differed between workers. Serum levels of SAAday correlated significantly with CRPday (r = 0.30, p = 0.0068). The serum levels of CRPday were associated significantly with exposure to endotoxinLimulus-day. Exposure, SAA and CRP data were also analyzed as av. of each season, and SAAseason was associated positively and significantly with endotoxinLimulus-season and endotoxinrFC-season and negatively with fungalseason exposure. In conclusion, CRPday was associated with the endotoxinLimulus-day and SAAseason with endotoxinLimulus-season and endotoxinrFC-season exposure. Thus, we hereby document that WWTP workers are exposed to airborne endotoxin which seems to have a negative impact on their health.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Victor Carp Kofoed
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Thea K Fischer
- Dept of Clinical Research, Nordsjaellands Hospital, Denmark; Dept of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| |
Collapse
|
5
|
Pinar-Méndez A, Galofré B, Blanch AR, García-Aljaro C. Culture and molecular methods as complementary tools for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157789. [PMID: 35931155 DOI: 10.1016/j.scitotenv.2022.157789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Bacterial communities in a full-scale drinking water treatment plant (DWTP) were characterized using matrix-assisted laser desorption/ionization time of flight mass-spectrometry (MALDI-TOF MS) to identify HPC isolates and the obtained results were compared to 16S rRNA (V4) metabarcoding data acquired in a previous study. Sixty-three samples were collected at nine stages of the potabilization process: river water and groundwater intake, decantation, sand filtration, ozonization, carbon filtration, reverse osmosis, the mixing chamber and post-chlorination drinking water. In total, 1807 bacterial colonies were isolated, 32 % of which were successfully identified to at least the genus level by MALDI-TOF MS using our previously developed Drinking Water Library. Trends in diversity were similar by both approaches, but differences were observed in the detection of taxa, especially at lower hierarchy levels. High bacterial diversity was observed in river and groundwater, where Proteobacteria predominated. The diversity decreased significantly after the chlorination step, where Bacillus sp. (Firmicutes) and an unknown genus of Obscuribacteraceae (Cyanobacteria) were the most prevalent genera according to MALDI-TOF MS and metabarcoding, respectively. The two approaches gave similar results for the decantation, sand filtration and mixing chamber steps, where the most abundant taxon was Flavobacterium. The combined use of these culture-based and culture-independent methods to characterize microbial populations may help to better understand the role of bacteria in water treatment and quality, which will be of value for DWTP management.
Collapse
Affiliation(s)
- Anna Pinar-Méndez
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Belén Galofré
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, Barcelona, Spain
| | - Anicet R Blanch
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
6
|
Kosikowska U, Stec J, Andrzejczuk S, Mendrycka M, Pietras-Ożga D, Stępień-Pyśniak D. Plasmid-Mediated Fluoroquinolone Resistance Genes in Quinolone-Susceptible Aeromonas spp. Phenotypes Isolated From Recreational Surface Freshwater Reservoir. Front Cell Infect Microbiol 2022; 12:885360. [PMID: 35646727 PMCID: PMC9132129 DOI: 10.3389/fcimb.2022.885360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas spp. are recognized as opportunistic pathogens causing diseases. Infections in humans can result mainly in gastrointestinal and wound diseases with or without progression to septicemia. Although Aeromonas spp. are not known uropathogens and they rarely cause urinary tract infection, we hypothesize that the presence of these bacteria in the water and the contact during, e.g., recreational and bathing activity can create the conditions for the colonization of the human body and may result to diseases in various locations, including the urinary tract. Our study presents the occurrence of aeromonad fluoroquinolone-susceptible phenotypes with the presence of plasmid-mediated fluoroquinolone resistance (PMQR) genes in a natural freshwater reservoir occasionally used for recreational activities. Sixty-nine isolates collected during the bathing period were identified by mass spectrometry and screened for the presence of fluoroquinolone-resistant phenotypes and genotypes. Fluoroquinolone susceptibility was determined as minimal inhibitory concentration values. PMQR qnr genes were detected by PCR. Isolates comprising eight species, namely, mainly Aeromonas veronii (50.7% isolates) and Aeromonas media (24.6% isolates) and rarely Aeromonas eucrenophila, Aeromonas caviae, Aeromonas bestiarum, Aeromonas ichthiosmia, and Aeromonas hydrophila, were selected. All isolates were phenotypically susceptible either to ciprofloxacin or levofloxacin. Unexpectedly, at least one to three of the PMQR genes were detected in 42.0% of the fluoroquinolone-susceptible Aeromonas spp. phenotypes. Mainly the qnrS (34.8% isolates) and qnrA (14.5% isolates) determinants were detected. In conclusion, the freshwater reservoir occasionally used for bathing was tainted with aeromonads, with a high occurrence of opportunistic pathogens such as A. veronii and A. media. MALDI‐TOF MS is a powerful technique for aeromonad identification. Our data reveals the mismatch phenomenon between fluoroquinolone-susceptible aeromonad phenotypes and the presence of plasmid-mediated qnr resistance genes. It suggests that phenotypically susceptible bacteria might be a potential source for the storage and transmission of these genes. The exposure during, e.g., a recreational activity may create the potential risk for causing infections, both diagnostically and therapeutically difficult, after expressing the resistance genes and quinolone-resistant strain selection.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Urszula Kosikowska,
| | - Joanna Stec
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Mendrycka
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
7
|
Zhang J, Wang Z, Wang HY, Chung CR, Horng JT, Lu JJ, Lee TY. Rapid Antibiotic Resistance Serial Prediction in Staphylococcus aureus Based on Large-Scale MALDI-TOF Data by Applying XGBoost in Multi-Label Learning. Front Microbiol 2022; 13:853775. [PMID: 35495667 PMCID: PMC9039744 DOI: 10.3389/fmicb.2022.853775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/01/2022] Open
Abstract
Multidrug resistance has become a phenotype that commonly exists among Staphylococcus aureus and is a serious concern for infection treatment. Nowadays, to detect the antibiotic susceptibility, antibiotic testing is generated based on the level of genomic for cure decision consuming huge of time and labor, while matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF/MS) shows its possibility in high-speed and effective detection on the level of proteomic. In this study, on the basis of MALDI-TOF spectra data of discovery cohort with 26,852 samples and replication cohort with 4,963 samples from Taiwan area and their corresponding susceptibilities to oxacillin and clindamycin, a multi-label prediction model against double resistance using Lowest Power set ensemble with XGBoost is constructed for rapid susceptibility prediction. With the output of serial susceptibility prediction, the model performance can realize 77% of accuracy for the serial prediction, the area under the receiver characteristic curve of 0.93 for oxacillin susceptibility prediction, and the area under the receiver characteristic curve of 0.89 for clindamycin susceptibility prediction. The generated multi-label prediction model provides serial antibiotic resistance, such as the susceptibilities of oxacillin and clindamycin in this study, for S. aureus-infected patients based on MALDI-TOF, which will provide guidance in antibiotic usage during the treatment taking the advantage of speed and efficiency.
Collapse
Affiliation(s)
- Jiahong Zhang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
An Efficient Method for Testing the Quality of Drinking-Water Filters Used for Home Necessities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074085. [PMID: 35409770 PMCID: PMC8998660 DOI: 10.3390/ijerph19074085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
This paper presents research conducted in the direction of analyzing the efficiency of filters used for drinking water intended for domestic consumption, with effects on the water quality gained from the public distribution network. A basic method that uses accessible techniques, such as optical microscopy and tests that involve the use of existing products on the consumer market, was developed regarding the filtration capacities of the main filters existing on the market—a method that has advantages, such as speed and ease of application, a unitary character in obtaining samples, low costs, and high efficiency. The technique approached is that of microscopy, and the samples used were taken from the laboratory tests made on the mentioned filters, using a specific experimental stand designed to support laboratory tests by using chosen filter cartridges. The research results obtained were analyzed to make a classification from the perspective of filtration efficiency, in terms of using statistical analysis tools (mathematical models and methods processed in MATLAB software). Moreover, by using a certain type of application based on specific mathematical algorithms, which takes into account some influential factors with a decisive role on household consumers, it was aimed to identify the optimal filter element for acquisition and use in its own regime. The aim of the study was to identify the optimal filter cartridge from the perspective of quality–price ratio.
Collapse
|
9
|
Ashfaq MY, Da'na DA, Al-Ghouti MA. Application of MALDI-TOF MS for identification of environmental bacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114359. [PMID: 34959061 DOI: 10.1016/j.jenvman.2021.114359] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 05/22/2023]
Abstract
Bacteria play a variety of roles in the environment. They maintain the balance in the ecosystem and provide different ecosystem services such as in biogeochemical cycling of nutrients, biodegradation of toxic pollutants, and others. Therefore, isolation and identification of different environmental bacteria are important to most environmental research. Due to the high cost and time associated with the conventional molecular techniques, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has gained considerable attention for routine identification of bacteria. This review aims to provide an overview of the application of MALDI-TOF MS in various environmental studies through bibliometric analysis and literature review. The bibliometric analysis helped to understand the time-variable application of MALDI-TOF MS in various environmental studies. The categorical literature review covers various environmental studies comprising areas like ecology, food microbiology, environmental biotechnology, agriculture, and plant sciences, which show the application of the technique for identification and characterization of pollutant-degrading, plant-associated, disease-causing, soil-beneficial, and other environmental bacteria. Further research should focus on bridging the gap between the phylogenetic identity of bacteria and their specific environmental functions or metabolic traits that can help in rapid advancements in environmental research, thereby, improving time and cost savings.
Collapse
Affiliation(s)
- Mohammad Y Ashfaq
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana A Da'na
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
10
|
Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z. What the Microscale Systems "See" In Biological Assemblies: Cells and Viruses? Anal Chem 2021; 94:59-74. [PMID: 34812604 DOI: 10.1021/acs.analchem.1c04244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xing Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Guo
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|