1
|
Zhou A, Subramanian PSG, El-Naggar S, Shisler JL, Verma V, Nguyen TH. Capsid and genome damage are the leading inactivation mechanisms of aerosolized porcine respiratory coronavirus at different relative humidities. Appl Environ Microbiol 2025; 91:e0231924. [PMID: 40192313 DOI: 10.1128/aem.02319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Relative humidity (RH) varies widely in indoor environments based on temperature, outdoor humidity, heating systems, and other environmental conditions. This study explored how RH affects aerosolized porcine respiratory coronavirus (PRCV), a model for coronaviruses, over a time range from 0 min to a maximum of 1 h, and the molecular mechanism behind viral infectivity reduction. These questions were answered by quantifying: (i) viral-host receptor interactions, (ii) capsid integrity, (iii) viral genome integrity, and (iv) virus infectivity. We found RH did not alter PRCV-receptor interactions. RHs 45-55% and 65-75% damaged viral genomes (2 log10 reduction and 1 log10 reduction, respectively, in terms of median sample value), whereas RHs 55-65% decreased capsid integrity (2 log10 reduction). No apparent virion damage was observed in RH 75-85%. Two assays were used to quantify virus presence: qPCR for detecting the viral genomes and plaque-forming unit assay for detecting the virus replication. Our results indicated that the qPCR assay overestimated the concentrations of infectious viruses, and RNase treatment with long-range RT-qPCR performed better than one-step RT-qPCR. We propose that understanding the influence of RH on the stability of aerosolized viruses provides critical information for detecting and preventing the indoor transmission of coronaviruses. IMPORTANCE Indoor environments can impact the stability of respiratory viruses, which can then affect the transmission rates. The mechanisms of how relative humidity (RH) affects virus infectivity still remain unclear. This study found RH inactivates porcine respiratory coronavirus by damaging its capsid and genome. The finding highlights the potential role of controlling indoor RH levels as a strategy to reduce the risk of coronavirus transmission.
Collapse
Affiliation(s)
- Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Salma El-Naggar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
| |
Collapse
|
2
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Zhang H, Wang Q, Zhuang H, Lin Q, Wang W, Ye F, Nawaz S, Hu J, Huang C, Yin H, Sun W, Han X, Jiang W. Development of Recombinant Antibodies and Its Application in Immunomagnetic Separation-Based Rapid Detection of Vibrio cholerae in Aquatic Environments. J Microbiol Biotechnol 2024; 34:2266-2278. [PMID: 39603837 PMCID: PMC11637869 DOI: 10.4014/jmb.2405.05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Cholera caused by Vibrio cholerae remains a major public health concern in many countries. The greatest obstacle to detection of V. cholerae contamination in drinking water or aquatic environments mainly relates to sample preparation steps, especially the enrichment step. In this study, immunomagnetic separation methods were developed based on sequence-defined recombinant antibodies (rAbs) against V. cholerae, then used for the specific and efficient enrichment of V. cholerae in water samples. Using the variable region genes of the anti-V. cholerae monoclonal antibodies (mAbs) 5F2, the full-length IgG rAbs (R5F2) were produced using mammalian human embryonic kidney 293T cells. Two antibodies, 5F2 and R5F2, were used to prepare immunomagnetic beads (IMBs), and their capture efficiencies (CEs) were evaluated. The results showed that 0.4 mg of 5F2-IMBs and R5F2-IMBs exhibited good CEs (96.0% and 75.9%, respectively) against V. cholerae within 40 min. The IMBs could still effectively capture V. cholerae in large-volume reaction systems (5 ml to 25 ml). The CEs of 5F2-IMBs and R5F2-IMBs ranged from 90.2% to 70.7% and 65.1% to 44.2%, respectively. Furthermore, 5F2-IMBs and R5F2-IMBs did not show significant cross-reactivity with other bacteria and exhibited high specificity. When R5F2-IMS was used in combination with quantitative real-time PCR, the detection limit was approximately 5 colony-forming units/25 ml after enrichment for 4 h. Our results suggest that the rAbs produced herein could provide useful alternatives to traditional hybridoma-based antibodies for accurate detection of V. cholerae in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Haiyang Zhang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Quan Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Haoxiang Zhuang
- College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P.R. China
| | - Qiu Lin
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Wenchao Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Fangyu Ye
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, P.R. China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, P.R. China
| | - Weidong Sun
- College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P.R. China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, P.R. China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China
| |
Collapse
|
5
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Oh C, Zheng G, Samineni L, Kumar M, Nguyen TH. Effective Removal of Enteric Viruses by Moringa oleifera Seed Extract Functionalized Cotton Filter. ACS ES&T WATER 2024; 4:3320-3331. [DOI: 10.1021/acsestwater.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Ave, Urbana, Illinois 61801, United States
- Department of Environmental Engineering Sciences, University of Florida, 1128 Center Dr, Gainesville, Florida 32611, United States
| | - Gang Zheng
- Department of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Ave, Urbana, Illinois 61801, United States
| | - Laxmicharan Samineni
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St, Austin, Texas 78712, United States
| | - Manish Kumar
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| | - Thanh H. Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Ave, Urbana, Illinois 61801, United States
- Institute of Genomic Biology, University of Illinois Urbana−Champaign, 1206 W. Gregory Dr, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Dehghan Banadaki M, Torabi S, Rockward A, Strike WD, Noble A, Keck JW, Berry SM. Simple SARS-CoV-2 concentration methods for wastewater surveillance in low resource settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168782. [PMID: 38000737 PMCID: PMC10842712 DOI: 10.1016/j.scitotenv.2023.168782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Wastewater-based epidemiology (WBE) measures pathogens in wastewater to monitor infectious disease prevalence in communities. Due to the high dilution of pathogens in sewage, a concentration method is often required to achieve reliable biomarker signals. However, most of the current concentration methods rely on expensive equipment and labor-intensive processes, which limits the application of WBE in low-resource settings. Here, we compared the performance of four inexpensive and simple concentration methods to detect SARS-CoV-2 in wastewater samples: Solid Fraction, Porcine Gastric Mucin-conjugated Magnetic Beads, Calcium Flocculation-Citrate Dissolution (CFCD), and Nanotrap® Magnetic Beads (NMBs). The NMBs and CFCD methods yielded the highest concentration performance for SARS-CoV-2 (∼16-fold concentration and ∼ 41 % recovery) and require <45 min processing time. CFCD has a relatively low consumable cost (<$2 per four sample replicates). All methods can be performed with basic laboratory equipment and minimal electricity usage which enables further application of WBE in remote areas and low resource settings.
Collapse
Affiliation(s)
| | - Soroosh Torabi
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
| | - Alexus Rockward
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States
| | - William D Strike
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States
| | - Ann Noble
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
| | - James W Keck
- WWAMI School of Medicine, University of Alaska Anchorage, United States
| | - Scott M Berry
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States; Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States.
| |
Collapse
|
9
|
Oh C, Xun G, Lane ST, Petrov VA, Zhao H, Nguyen TH. Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168701. [PMID: 37992833 DOI: 10.1016/j.scitotenv.2023.168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Argonaute protein from the archaeon Pyrococcus furiosus (PfAgo) is a DNA-guided nuclease that targets DNA with any sequence. We designed a virus detection assay in which the PfAgo enzyme cleaves the reporter probe, thus generating fluorescent signals when amplicons from a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay contain target sequences. We confirmed that the RT-LAMP-PfAgo assay for the SARS-CoV-2 Delta variant produced significantly higher fluorescent signals (p < 0.001) when a single nucleotide polymorphism (SNP), exclusive to the Delta variant, was present, compared to the samples without the SNP. Additionally, the duplex assay for Pepper mild mottle virus (PMMOV) and SARS-CoV-2 detection produced specific fluorescent signals (FAM or ROX) only when the corresponding sequences were present. Furthermore, the RT-LAMP-PfAgo assay does not require dilution to reduce the impact of environmental inhibitors. The limit of detection of the PMMOV assay, determined with 30 wastewater samples, was 28 gc/μL, with a 95 % confidence interval of [11,103]. Finally, using a point-of-use device, the RT-LAMP-PfAgo assay successfully detected PMMOV in wastewater samples. Based on our findings, we conclude that the RT-LAMP-PfAgo assay can be used as a portable, SNP-specific duplex assay, which will significantly improve virus surveillance in wastewater.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| | - Guanhua Xun
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Vassily Andrew Petrov
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Huimin Zhao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Deng Y, Xu X, Zheng X, Leung GM, Chui HK, Li Y, Hu Q, Yang M, Huang X, Tang S, Zhang L, Zhang T. Advances and implications of wastewater surveillance for SARS-CoV-2. CHINESE SCIENCE BULLETIN 2024; 69:362-369. [DOI: 10.1360/tb-2022-1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Oh C, Zhou A, O'Brien K, Jamal Y, Wennerdahl H, Schmidt AR, Shisler JL, Jutla A, Schmidt AR, Keefer L, Brown WM, Nguyen TH. Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158448. [PMID: 36063927 PMCID: PMC9436825 DOI: 10.1016/j.scitotenv.2022.158448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology (WBE), an emerging approach for community-wide COVID-19 surveillance, was primarily characterized at large sewersheds such as wastewater treatment plants serving a large population. Although informed public health measures can be better implemented for a small population, WBE for neighborhood-scale sewersheds is less studied and not fully understood. This study applied WBE to seven neighborhood-scale sewersheds (average population of 1471) from January to November 2021. Community testing data showed an average of 0.004 % incidence rate in these sewersheds (97 % of monitoring periods reported two or fewer daily infections). In 92 % of sewage samples, SARS-CoV-2 N gene fragments were below the limit of quantification. We statistically determined 10-2.6 as the threshold of the SARS-CoV-2 N gene concentration normalized to pepper mild mottle virus (N/PMMOV) to alert high COVID-19 incidence rate in the studied sewershed. This threshold of N/PMMOV identified neighborhood-scale outbreaks (COVID-19 incidence rate higher than 0.2 %) with 82 % sensitivity and 51 % specificity. Importantly, neighborhood-scale WBE can discern local outbreaks that would not otherwise be identified by city-scale WBE. Our findings suggest that neighborhood-scale WBE is an effective community-wide disease surveillance tool when COVID-19 incidence is maintained at a low level.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States.
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Kate O'Brien
- School of Integrative Biology, University of Illinois Urbana-Champaign, United States
| | - Yusuf Jamal
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, United States
| | - Hayden Wennerdahl
- Illinois State Water Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, United States
| | - Arthur R Schmidt
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois Urbana-Champaign, United States
| | - Antarpreet Jutla
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, United States
| | - Arthur R Schmidt
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Laura Keefer
- Illinois State Water Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, United States
| | - William M Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
12
|
Bivins A, Kaya D, Ahmed W, Brown J, Butler C, Greaves J, Leal R, Maas K, Rao G, Sherchan S, Sills D, Sinclair R, Wheeler RT, Mansfeldt C. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155347. [PMID: 35460780 PMCID: PMC9020839 DOI: 10.1016/j.scitotenv.2022.155347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA
| | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Raeann Leal
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Kendra Maas
- Microbial Analyses, Resources, and Services Facility, University of Connecticut, Storrs, CT 06269, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA; Center for Climate and Health, Morgan State University, Baltimore, MD 21251, USA
| | - Deborah Sills
- Bucknell University, Department of Civil and Environmental Engineering, Lewisburg, PA 17837, USA
| | - Ryan Sinclair
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, USA
| |
Collapse
|
13
|
Oh C, Sashittal P, Zhou A, Wang L, El-Kebir M, Nguyen TH. Design of SARS-CoV-2 Variant-Specific PCR Assays Considering Regional and Temporal Characteristics. Appl Environ Microbiol 2022; 88:e0228921. [PMID: 35285246 PMCID: PMC9004361 DOI: 10.1128/aem.02289-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Monitoring the prevalence of SARS-CoV-2 variants is necessary to make informed public health decisions during the COVID-19 pandemic. PCR assays have received global attention, facilitating a rapid understanding of variant dynamics because they are more accessible and scalable than genome sequencing. However, as PCR assays target only a few mutations, their accuracy could be reduced when these mutations are not exclusive to the target variants. Here we introduce PRIMES, an algorithm that evaluates the sensitivity and specificity of SARS-CoV-2 variant-specific PCR assays across different geographical regions by incorporating sequences deposited in the GISAID database. Using PRIMES, we determined that the accuracy of several PCR assays decreased when applied beyond the geographic scope of the study in which the assays were developed. Subsequently, we used this tool to design Alpha and Delta variant-specific PCR assays for samples from Illinois, USA. In silico analysis using PRIMES determined the sensitivity/specificity to be 0.99/0.99 for the Alpha variant-specific PCR assay and 0.98/1.00 for the Delta variant-specific PCR assay in Illinois, respectively. We applied these two variant-specific PCR assays to six local sewage samples and determined the dominant SARS-CoV-2 variant of either the wild type, the Alpha variant, or the Delta variant. Using next-generation sequencing (NGS) of the spike (S) gene amplicons of the Delta variant-dominant samples, we found six mutations exclusive to the Delta variant (S:T19R, S:Δ156/157, S:L452R, S:T478K, S:P681R, and S:D950N). The consistency between the variant-specific PCR assays and the NGS results supports the applicability of PRIMES. IMPORTANCE Monitoring the introduction and prevalence of variants of concern (VOCs) and variants of interest (VOIs) in a community can help the local authorities make informed public health decisions. PCR assays can be designed to keep track of SARS-CoV-2 variants by measuring unique mutation markers that are exclusive to the target variants. However, the mutation markers may not be exclusive to the target variants because of regional and temporal differences in variant dynamics. We introduce PRIMES, an algorithm that enables the design of reliable PCR assays for variant detection. Because PCR is more accessible, scalable, and robust for sewage samples than sequencing technology, our findings will contribute to improving global SARS-CoV-2 variant surveillance.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Palash Sashittal
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mohammed El-Kebir
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thanh H. Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|