1
|
Xu S, Li R, Liao Y, Bian J, Liu R, Liu H. Biodegradation of organic micropollutants by anoxic denitrification: Roles of extracellular polymeric substance adsorption, enzyme catalysis, and reactive oxygen species oxidation. WATER RESEARCH 2024; 268:122563. [PMID: 39388777 DOI: 10.1016/j.watres.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The control of organic micropollutants (OMPs) in water environments have received significant attention. Denitrification was reported to exhibit good efficiency to remove OMPs, and the mechanisms involved in are too intricate to be well illustrated. In this study, we selected nitrobenzene [NB] and bisphenol A [BPA] as model pollutants and aimed to unravel the mechanisms of Paracoccus Denitrificans in the removal of OMPs, with a specific emphasis on aerobic behavior during denitrification processes. We demonstrated the formation of extracellular superoxide radicals, i.e., extracellular •O2-, using a chemiluminescence probe and found that extracellular polymeric substance adsorption, extracellular •O2-, and microbial assimilation contributed approximately 40 %, 10 %, and 50 % to OMPs removal, respectively. Transcriptome analysis further revealed the high expression and enrichment of several pathways, such as drug metabolism-other enzymes, of which a typical aerobic enzyme of polyphenol oxidase [PPO] participates in the degradation of NB and BPA. Importantly, all the immediate products showed a significant decrease in toxicity during the aerobic activity-related OMPs degradation process based on the proposed degradation pathways. This study demonstrates the formation of extracellular •O2- and the mechanisms of extracellular •O2-- and PPO-mediated OMPs biodegradation, and offers new insights into OMPs control in widely-used denitrification treatment processes.
Collapse
Affiliation(s)
- Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyong Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Li G, Zhang Y, Zhang X, Zhang J, Sun B. Deciphering the Formation of Fe(IV) in the Fe(II)/Peroxydisulfate Process: The Critical Role of Sulfate Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15864-15873. [PMID: 39162266 DOI: 10.1021/acs.est.4c06675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
This study delves into the formation of ferryl ions (Fe(IV)) within the Fe(II)/peroxydisulfate (PDS) process, a pivotal reaction in advanced oxidation processes (AOPs) aimed at organic pollutant removal. Our findings challenge the conventional view that Fe(IV) predominantly forms through oxygen transfer from PDS to Fe(II), revealing that sulfate radicals (SO4•-) play a crucial role in Fe(IV) generation. By employing competitive kinetics, the second-order rate constant for Fe(III) oxidation by SO4•- was quantified as 4.58 × 108 M-1 s-1. Factors such as the probe compound concentration, chloride presence, and iron species influence Fe(IV) generation, all of which were systematically evaluated. Additionally, the study explores Fe(IV) formation in various Fe(II)-activated AOPs, demonstrating that precursors like peroxymonosulfate and H2O2 can also directly oxidize Fe(II) to Fe(IV). Through experimental data, kinetic modeling, and oxygen-18 labeling experiments, this research offers a comprehensive understanding of the Fe(II)/PDS system, facilitating the optimization of AOPs for pollutant degradation. Finally, introducing HSO3- was proposed to shift the Fe(II)/PDS process from Fe(IV)-dominated to SO4•--dominated mechanisms, thereby enhancing pollutant removal efficiencies.
Collapse
Affiliation(s)
- Guang Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yiqiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Su Q, Yuan D, Wan S, Sun L. A novel visible light-driven oxygen doped C 3N 4/Bi 12O 17Cl 2/ferrate(VI) system for Bisphenol A degradation: Radical and nonradical pathways. CHEMOSPHERE 2024; 364:143227. [PMID: 39218258 DOI: 10.1016/j.chemosphere.2024.143227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, visible light-activated photocatalyst oxygen-doped C3N4@Bi12O17Cl2 (OCN@BOC) and Fe(VI) coupling system was proposed for the efficient degradation of bisphenol A (BPA). The comprehensive characterization of the OCN@BOC photocatalyst revealed its excellent photogenerated carrier separation rate in heterogeneous structures. The OCN@BOC/Fe(VI)/Vis system exhibited a remarkable BPA removal efficiency of over 84% within 5 min. Comparatively, only 37% and 59% of BPA were degraded by single OCN@BOC and Fe(VI) in 5 min, respectively. Reactive species scavenging experiments, phenyl sulfoxide transformation experiments, and electron paramagnetic resonance experiments confirmed the involvement of superoxide radicals (⋅O2-), singlet oxygen (1O2), as well as iron(V)/iron(IV) (Fe(V)/Fe(IV)) species in the degradation process of BPA. Furthermore, density functional theoretical calculations and identification of intermediates provided insights into the potential degradation mechanism of BPA during these reactions. Additionally, simulation evaluations using an ecological structure activity relationship model demonstrated that the toxicity of BPA to the ecological environment was mitigated during its degradation process. This study presented a novel strategy for removing BPA utilizing visible light photocatalysts, highlighting promising applications for practical water environment remediation with the OCN@BOC/Fe(VI)/Vis system.
Collapse
Affiliation(s)
- Qinhua Su
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Dan Yuan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shungang Wan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection of Haikou City, Haikou, 570228, China
| | - Lei Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection of Haikou City, Haikou, 570228, China.
| |
Collapse
|
4
|
Zhao XN, Liu YL, Huang ZS, Lu J, Cao Y, Wang JX, Chen Z, Ma J, Wang L. Understanding Variations in Ferrate Detection through the ABTS Method in the Presence of Electron-Rich Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14575-14584. [PMID: 39094193 DOI: 10.1021/acs.est.4c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The chromogenic reaction between 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and ferrate [Fe(VI)] has long been utilized for Fe(VI) content measurement. However, the presence of electron-rich organic compounds has been found to significantly impact Fe(VI) detection using the ABTS method, leading to relative errors ranging from ∼88 to 100%. Reducing substances consumed ABTS•+ and resulted in underestimated Fe(VI) levels. Moreover, the oxidation of electron-rich organics containing hydroxyl groups by Fe(VI) could generate a phenoxyl radical (Ph•), promoting the transformation of Fe(VI) → Fe(V) → Fe(IV). The in situ formation of Fe(IV) can then contribute to ABTS oxidation, altering the ABTS•+:Fe(VI) stoichiometry from 1:1 to 2:1. To overcome these challenges, we introduced Mn(II) as an activator and 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic agent for Fe(VI) detection. This Mn(II)/TMB method enables rapid completion of the chromogenic reaction within 2 s, with a low detection limit of approximately 4 nM and a wide detection range (0.01-10 μM). Importantly, the Mn(II)/TMB method exhibits superior resistance to reductive interference and effectively eliminates the impact of phenoxyl-radical-mediated intermediate valence iron transfer processes associated with electron-rich organic compounds. Furthermore, this method is resilient to particle interference and demonstrates practical applicability in authentic waters.
Collapse
Affiliation(s)
- Xiao-Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinfeng Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Yue Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Xiao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Yuan J, Li Y, Chen X, Yi Q, Wang Z. One electron oxidation-induced degradation of brominated flame retardants in electroactive membrane filtration system: Vital role of dichlorine radical-mediated process. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134318. [PMID: 38643582 DOI: 10.1016/j.jhazmat.2024.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Reactive chlorine species (RCS) are inevitably generated in electrochemical oxidation process for treating high-salinity industrial wastewater, thereby resulting in the competition with coexisting hydroxyl radicals (•OH) for oxidizing recalcitrant organic compounds. Due to the low redox potentials compared to •OH, the role of RCS has been often overlooked. In this work, we developed an electroactive membrane filtration (EMF) system that had a high removal efficiency (99.1 ± 0.5 %) for tetrabromobisphenol S (TBBPS) at low energy consumption (1.45 kWh m-3). Electron spin resonance spectroscopy and molecular probing tests indicated the predominance of Cl2•-, of which steady-state concentration (2.2 ×10-10 M) was extremely higher than those of ClO• (6.7 ×10-13 M), •OH (0.95 ×10-13 M), and Cl• (2.39 ×10-15 M). The density functional theory (DFT) and intermediate product analysis highlighted that Cl2•- radicals had a higher electrophilic attack efficacy than •OH radicals for inducing changes in the electron density of the carbon atoms around phenolic hydroxyl groups, thus leading to the generation of transition state intermediates and accelerating the degradation of TBBPS. Our work demonstrates the vital role of Cl2•- radicals for pollutant degradation, highlighting the potential of this technology for cost-effective removal of recalcitrant organic compounds from water and wastewater.
Collapse
Affiliation(s)
- Jia Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuying Yi
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
6
|
Miao J, Zhu Y, Wei Y, Wen X, Shao Z, Zhou B, Wu C, Long M. Plastic wastes-derived N-doped carbon nanotubes for efficient removal of sulfamethoxazole in high salinity wastewater via nonradical peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133344. [PMID: 38147749 DOI: 10.1016/j.jhazmat.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Peroxymonosulfate (PMS) catalytic activation is effective to eliminate organic pollutants from water, thus the development of low-cost and efficient catalysts is significant in applications. The resource conversion of plastic wastes (PWs) into carbon nanotubes (CNTs) is a promising candidate for PMS-based advanced oxidation processes (AOPs), and also a sustainable strategy to realize plastic management and reutilization. Herein, cost-effective PWs-derived N-doped CNTs (N-pCNTs) were synthesized, which displayed efficient activity for PMS activation through an electron transfer pathway (ETP) for sulfamethoxazole (SMX) degradation in high salinity water. The pyrrolic N induced the positively charged surface of N-pCNTs, favoring the electrostatic adsorption of PMS and subsequent generation of active PMS* . A galvanic oxidation process was developed to prove the electron-shuttle dominated ETP for SMX oxidation. Combined with theoretical calculations, the efficiency of ETP was determined by the potential difference between HOMO of SMX and LUMO of N-pCNTs. Such oxidation produced low-toxicity intermediates and resulted in selective degradation of specific sulfonamide antibiotics. This work reveals the feasibility of low-cost N-pCNTs catalysts from PWs serving as an appealing candidate for PMS-AOPs in water remediation, providing a new solution to alleviate environmental issues caused by PWs and also advances the understanding of ETP during PMS activation.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yan Wei
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Cao W, Hu C, Zhang P, Qiu T, Wang S, Huang G, Lyu L. Salinity-mediated water self-purification via bond network distorting of H 2O molecules on DRC-surface. Proc Natl Acad Sci U S A 2023; 120:e2311920120. [PMID: 37922324 PMCID: PMC10636312 DOI: 10.1073/pnas.2311920120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 11/05/2023] Open
Abstract
High salinity has plagued wastewater treatment for a long time by hindering pollutant removal, thereby becoming a global challenge for water pollution control that is difficult to overcome even with massive energy consumption. Herein, we propose a novel process for rapid salinity-mediated water self-purification in a dual-reaction-centers (DRC) system with cation-π structures. In this process, local hydrogen bond networks of H2O molecules can be distorted through the mediation of salinity, thereby opening the channels for the preferential contact of pollutants on the DRC interface. As the result, the elimination rate of pollutants increased approximately 32-fold at high salinity (100 mM) without any external energy consumption. Our findings provide a novel technology for high-efficiency and low-consumption water self-purification, which is of great significance in environmental remediation and even fine chemical industry.
Collapse
Affiliation(s)
- Wenrui Cao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou510006, China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou510006, China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou510006, China
| | - Ting Qiu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou510006, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Guohe Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
- Environmental Systems Engineering Program, University of Regina, Regina, SKS4S0A2, Canada
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou510006, China
- Institute of Rural Revitalization, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
8
|
Wu Y, Wang H, Du J, Si Q, Zhao Q, Jia W, Wu Q, Guo WQ. Enhanced Oxidation of Organic Compounds by the Ferrihydrite-Ferrate System: The Role of Intramolecular Electron Transfer and Intermediate Iron Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16662-16672. [PMID: 37782530 DOI: 10.1021/acs.est.3c05798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Previous studies mostly held that the oxidation capacity of ferrate depends on the involvement of intermediate iron species (i.e., FeIV/FeV), however, the potential role of the metastable complex was disregarded in ferrate-based heterogeneous catalytic oxidation processes. Herein, we reported a complexation-mediated electron transfer mechanism in the ferrihydrite-ferrate system toward sulfamethoxazole (SMX) degradation. A synergy between intermediate FeIV/FeV oxidation and the intramolecular electron transfer step was proposed. Specifically, the conversion of phenyl methyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) suggested that FeIV/FeV was involved in the oxidation of SMX. Moreover, based on the in situ Raman test and chronopotentiometry analysis, the formation of the metastable complex of ferrihydrite/ferrate was found, which possesses higher oxidation potential than free ferrate and could achieve the preliminary oxidation of organics via the electron transfer step. In addition, the amino group of SMX could complex with ferrate, and the resulting metastable complex of ferrihydrite/ferrate would combine further with SMX molecules, leading to intramolecular electron transfer and SMX degradation. The ferrate loss experiments suggested that ferrihydrite could accelerate the decomposition of ferrate. Finally, the effects of pH value, anions, humic acid, and actual water on the degradation of SMX by ferrihydrite-ferrate were also revealed. Overall, ferrihydrite demonstrated high catalytic capacity, good reusability, and nontoxic performance for ferrate activation. The ferrihydrite-ferrate process may be a green and promising method for organic removal in wastewater treatment.
Collapse
Affiliation(s)
- Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Li X, Song H, Zhang G, Zou W, Cao Z, Pan Y, Zhang G, Zhou M. Enhanced organic pollutant removal in saline wastewater by a tripolyphosphate-Fe 0/H 2O 2 system: Key role of tripolyphosphate and reactive oxygen species generation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131821. [PMID: 37315414 DOI: 10.1016/j.jhazmat.2023.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
The effects of tripolyphosphate (TPP) on organic pollutant degradation in saline wastewater using Fe0/H2O2 were systematically investigated to elucidate its mechanism and the main reactive oxygen species (ROS). Organic pollutant degradation was dependent on the Fe0 and H2O2 concentration, Fe0/TPP molar ratio, and pH value. The apparent rate constant (kobs) of TPP-Fe0/H2O2 was 5.35 times higher than that of Fe0/H2O2 when orange II (OGII) and NaCl were used as the target pollutant and model salt, respectively. The electron paramagnetic resonance (EPR) and quenching test results showed that •OH, O2•-, and 1O2 participated in OGII removal, and the dominant ROS were influenced by the Fe0/TPP molar ratio. The presence of TPP accelerates Fe3+/Fe2+ recycling and forms Fe-TPP complexes, which ensures sufficient soluble Fe for H2O2 activation, prevents excessive Fe0 corrosion, and thereby inhibits Fe sludge formation. Additionally, TPP-Fe0/H2O2/NaCl maintained a performance similar to those of other saline systems and effectively removed various organic pollutants. The OGII degradation intermediates were identified using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and density functional theory (DFT), and possible degradation pathways for OGII were proposed. These findings provide a facile and cost-effective Fe-based AOP method for removing organic pollutants from saline wastewater.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Huajing Song
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Gaili Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Wei Zou
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Zhigguo Cao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Guoqing Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
10
|
Niu L, Lin J, Chen W, Zhang Q, Yu X, Feng M. Ferrate(VI)/Periodate System: Synergistic and Rapid Oxidation of Micropollutants via Periodate/Iodate-Modulated Fe(IV)/Fe(V) Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7051-7062. [PMID: 37074844 DOI: 10.1021/acs.est.2c08965] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Qian Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| |
Collapse
|
11
|
Zheng Q, Luo Y, Luo Z. Carbonate and bicarbonate ions impacts on the reactivity of ferrate(VI) for 3,4-dichlorophenol removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27241-27256. [PMID: 36378373 DOI: 10.1007/s11356-022-24134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Carbonate and bicarbonate ions are common constituents found in wastewater and natural water matrices, and their impacts on the reactivity of ferrate(VI) (Fe(VI)) with 3,4-dichlorophenol (3,4-DCP) were investigated by determining second-order rate constants of 3,4-DCP removal by Fe(VI) in the presence of CO32- and/or HCO3-. The second-order rate constants decreased from 41.75 to 7.04 M-1 s-1 with an increase of [CO32-] from 0 to 2.0 mM, indicating that CO32- exhibits an inhibitory effect on 3,4-DCP removal kinetics, and experiments on pH effect, radical quenching, and Fe(VI) stability were conducted to explore possible reasons for its effect. Under identical pH conditions, the rate constant in NaOH medium was always higher than in Na2CO3 medium, suggesting that the inhibitory effect partially comes from an increase in alkalinity. Furthermore, the scavenging of hydroxyl radical by carbonate ion also contributed to the inhibitory effect of CO32-. On the other hand, the enhancement effect of CO32- depending on the increase in Fe(VI) stability was found, but did not exceed its inhibitory effect. In addition, 3,4-DCP removal kinetics was not affected by HCO3-, while synergistically inhibited by CO32-/HCO3-. Moreover, 3,4-DCP removal efficiency was substantially suppressed in the presence of CO32-, while the slight enhancement effect of HCO3- and the synergistic inhibitory effect of CO32-/HCO3- were observed. The experimental results clearly demonstrated that carbonate and bicarbonate ions play an important role in the process of 3,4-DCP removal by Fe(VI) and should not be considered only as scavengers.
Collapse
Affiliation(s)
- Qing Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
- National-Local Joint Engineering Laboratory of Chemical Process Strengthening and Reaction, Chongqing University, Chongqing, 401331, China
| | - Yiwen Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Zhiyong Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
- National-Local Joint Engineering Laboratory of Chemical Process Strengthening and Reaction, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
12
|
Lin W, Guo J, Zeng J, Chen R, Ngo HH, Nan J, Li G, Ma J, Ding A. Enhanced sludge dewaterability by ferrate/ferric chloride: The key role of Fe(IV) on the changes of EPS properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159562. [PMID: 36273561 DOI: 10.1016/j.scitotenv.2022.159562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The complex characteristics of extracellular polymeric substances (EPS) seriously affect the improvement of sludge dewaterability. Ferrate (Fe(VI))/ferric chloride (Fe(III)) was applied through its strong oxidability to effectively enhance sludge dewaterablity by changing the properties of EPS in this study. Results confirmed that water content (WC), specific resistance to filtration (SRF) and capillary suction time (CST) fell from 82.8 %, 9.3 × 1010 s2/g and 35.1 s to 76.1 %, 2.6 × 1010 s2/g and 16.2 s, respectively, when adding 12 mg Fe(VI)/g VSS and 12 mg Fe(III)/g VSS with the dosing interval of 5 min. Investigations of the mechanism strongly suggested that Fe(VI) was successfully catalyzed by Fe(III), promoting the generation of methyl phenyl sulfone (PMSO2) and facilitating the electron transfer, with Fe(IV) having the major role in the oxidation process. Furthermore, sludge water-holding capacity and hydrophilicity waned after oxidation due to the destruction of EPS structure, which promoted the decrement of bound water to enhance the discharge of sludge water, so as to improve the efficiency of dewatering.
Collapse
Affiliation(s)
- Wei Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Junmin Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Renglu Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090, Harbin, P.R. China.
| |
Collapse
|
13
|
Zhang W, Sun W, Zhang Y, Yu D, Piao W, Wei H, Liu X, Sun C. Effect of inorganic salt on the removal of typical pollutants in wastewater by RuO 2/TiO 2 via catalytic wet air oxidation. CHEMOSPHERE 2023; 312:137194. [PMID: 36372337 DOI: 10.1016/j.chemosphere.2022.137194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The treatment of high-salinity and high-organic wastewater is a tough task, with the removal of organic matter and the separation of salts often mutually restricting. Catalytic wet air oxidation (CWAO) coupled desalination technology (membrane distillation (MD), membrane bioreactor (MBR), ultrafiltration (UF), nanofiltration (NF), etc.) provides an effective method to simultaneously degrade the high-salinity (via desalination) and high-organic matters (via CWAO) in wastewater. In this work, five kinds of RuO2/TiO2 catalysts with different calcination temperatures were prepared for CWAO of maleic acid wastewater with a theoretical chemical oxygen demand (COD) value of 20,000 mg L-1. RuO2/TiO2 series catalysts demonstrated prominent salt resistance, with more than 80% TOC removal rates in the CWAO system containing 5 wt% Na2SO4; while RuO2/TiO2-350 showed the best degradation performance in both non-salinity and Na2SO4-containing conditions. Multiple characterization techniques, such as XRD, BET, XPS, NH3-TPD and TEM etc., verified the physicochemical structure of RuO2/TiO2 catalysts, and their influence on the degradation of pollutants. The calcination temperature was found to have a direct impact on the specific surface area, pore volume, oxygen vacancies and acid sites of catalysts, which in turn affected the ultimate catalytic activity. Furthermore, we also investigated the performance of the RuO2/TiO2-350 catalyst for the treatment of acids, alcohols and aromatic compounds with the addition of NaCl or Na2SO4, proving its good universality and excellent salt resistance in saline wastewater. Meanwhile, the relationship between the structure of three types of organic compounds and the degradation effect in the CWAO system was also explored.
Collapse
Affiliation(s)
- Wanying Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenjing Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yanan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Graduate School of North China Electric Power University, Beijing, 102206, PR China
| | - Danyang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Weiling Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| |
Collapse
|
14
|
Elimination of pesticide from high salinity wastewater by electrochlorination process: Active chlorine species and scale-up performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Xia Y, Jiang X, Wang Y, Huang Q, Chen D, Hou C, Mu Y, Shen J. Enhanced anaerobic reduction of nitrobenzene at high salinity by betaine acting as osmoprotectant and regulator of metabolism. WATER RESEARCH 2022; 223:118982. [PMID: 36058098 DOI: 10.1016/j.watres.2022.118982] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic technology is extensively applied in the treatment of industrial organic wastewater, but high salinity always triggers microbial cell dehydration, causing the failure of the anaerobic process. In this work, betaine, one kind of compatible solutes which could balance the osmotic pressure of anaerobic biomass, was exogenously added for enhancing the anaerobic reduction of nitrobenzene (NB) at high salinity. Only 100 mg L-1 betaine dosing could significantly promote the removal efficiency of NB within 35 h at 9% salinity (36.92 ± 4.02% without betaine and 72.94 ± 6.57% with betaine). The relieving effects on salt stress could be observed in the promotion of more extracellular polymeric substances (EPS) secretion with betaine addition. Additionally, the oxidation-reduction potential (ORP), as well as the electron transfer system (ETS) value, was increased with betaine addition, which was reflected in the improvement of system removal efficiency and enzyme activity. Microbial community analysis demonstrated that Bacillus and Clostridiisalibacter which were positively correlated with the stability of the anaerobic process were enriched with betaine addition at high salinity. Metagenomic analysis speculated that the encoding genes for salt tolerance (kdpB/oadA/betA/opuD/epsP/epsH) and NB degradation (nfsA/wrbA/ccdA/menC) obtained higher relative abundance with betaine addition under high salt environment, which might be the key to improving salt tolerance of anaerobic biomass. The long-term assessment demonstrated that exogenous addition betaine played an important role in maintaining the stability of the anaerobic system, which would be a potential strategy to achieve a high-efficiency anaerobic process under high salinity conditions.
Collapse
Affiliation(s)
- Yan Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qian Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|