1
|
Dong Z, Yao J, Hu Z, Yang J, Zhang Y. Insight into roles of carbon anodes for removal of refractory organic contaminants in electro-peroxone system: Mechanism, performance and stability. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133957. [PMID: 38452678 DOI: 10.1016/j.jhazmat.2024.133957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Electro-peroxone (EP) is a novel technique for the removal of refractory organic contaminants (ROCs), while the role of anode in this system is neglected. In this work, the EP system with graphite felt anode (EP-GF) and activated carbon fiber anode (EP-ACF) was developed to enhance ibuprofen (IBP) removal. The results showed that 91.2% and 98.6% of IBP was removed within 20 min in EP-GF and EP-ACF, respectively. Hydroxy radical (O⋅H) was identified as the dominant reactive species, contributing 80.9% and 54.0% of IBP removal in EP-ACF and EP-GF systems, respectively. The roles of adsorption in EP-ACF and direct electron transfer in EP-GF cannot be ignored. Due to the differences in mechanism, EP-GF and EP-ACF systems were suitable for the removal of O⋅H-resistant ROCs (e.g., oxalic acid and pyruvic acid) and non-O⋅H-resistant ROCs (e.g., IBP and nitrobenzene), respectively. Both systems had excellent stability relying on the introduction of oxygen functional groups on the anode, and their electrolysis energy consumption was significantly lower than that of EP-Pt system. The three degradation pathways of IBP were proposed, and the toxicity of intermediates were evaluated. In general, carbon anodes have a good application prospect in the removal of ROCs in EP systems.
Collapse
Affiliation(s)
- Zekun Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China
| | - Jie Yao
- Power China Huadong Engineering Corporation Limited, Hangzhou 310023, China
| | - Zhihui Hu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China
| | - Jiao Yang
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
2
|
Li X, Yu Y, Zhang R, Guo W. Cobalt etched graphite felt electrode for enhanced removal of organic pollutant in aqueous solution with a solid polymer electrolyte. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18614-18624. [PMID: 38349493 DOI: 10.1007/s11356-024-32440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
In this study, cobalt etched graphite felt electrodes were produced using a simple etching technique. It was used in combination with a solid polymer electrolyte (SPE) for the degradation of the target contaminant Orange II by Electro-Fenton (EF) technique in low conductivity water. In this method, 94% of Orange II in low conductivity water was removed in 90 min. The characterization analysis substantiates the hypothesis that the electrodes produced exhibit a three-dimensional porous structure, augmented defect concentration, and enhanced electron transfer capability. In addition, the potential reaction mechanism was inferred from the radical quenching experiments, and hydroxyl radicals (·OH) were deemed the main reactive substances. The combination of cobalt etched graphite felt electrodes with SPE demonstrates remarkable efficacy in the treatment of organic wastewater characterized by low electrical conductivity.
Collapse
Affiliation(s)
- Xinyu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanjun Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ruijuan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
3
|
Guo S, Feng D, Li Y, Liu L, Tang J. Innovations in chemical degradation technologies for the removal of micro/nano-plastics in water: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115979. [PMID: 38244511 DOI: 10.1016/j.ecoenv.2024.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Micro/nanoplastics (M/NPs) in water have raised global concern due to their potential environmental risks. To reestablish a M/NPs free world, enormous attempts have been made toward employing chemical technologies for their removal in water. This review comprehensively summarizes the advances in chemical degradation approaches for M/NPs elimination. It details and discusses promising techniques, including photo-based technologies, Fenton-based reaction, electrochemical oxidation, and novel micro/nanomotors approaches. Subsequently, critical influence factors, such as properties of M/NPs and operating factors, are analyzed in this review specifically. Finally, it concludes by addressing the current challenges and future perspectives in chemical degradation. This review will provide guidance for scientists to further explore novel strategies and develop feasible chemical methods for the improved control and remediation of M/NPs in the future.
Collapse
Affiliation(s)
- Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center/Weifang University of Science and Technology, Weifang 262700, Shandong, China
| | - Yu Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Lu K, Ren T, Yan N, Huang X, Zhang X. Revisit the Role of Salinity in Heterogeneous Catalytic Ozonation: The Trade-Off between Reaction Inhibition and Mass Transfer Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18888-18897. [PMID: 37387610 DOI: 10.1021/acs.est.3c00595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) is an effective technology for advanced wastewater treatment, while the influence of coexisting salts remains unclear and controversial. Here, we systematically explored the influence of NaCl salinity on the reaction and mass transfer of HCO through lab experiments, kinetic simulation, and computational fluid dynamics modeling, and proposed that the trade-off between reaction inhibition and mass transfer enhancement would affect the pollutants degradation pattern under varying salinity. The increase of NaCl salinity decreased ozone solubility and accelerated the futile consumption of ozone and hydroxyl radicals (•OH), and the maximum •OH concentration under 50 g/L salinity was only 23% of that without salinity. However, the increase of NaCl salinity also significantly reduced the ozone bubble size and enhanced the interphase and intraliquid mass transfer, with the volumetric mass transfer coefficient being 130% higher than that without salinity. The trade-off between reaction inhibition and mass transfer enhancement shifted under different pH values and aerator pore sizes, and the oxalate degradation pattern would change correspondingly. Besides, the trade-off was also identified for Na2SO4 salinity. These results emphasized the dual influence of salinity and offered a new theoretical perspective on the role of salinity in the HCO process.
Collapse
Affiliation(s)
- Kechao Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ni Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wu B, Jiang Z, Lei W, Sun J, Chen Z. A novel flow-through dual-system electro-Fenton for boosting PAEs removal efficiency in natural waters. CHEMOSPHERE 2023; 330:138645. [PMID: 37044145 DOI: 10.1016/j.chemosphere.2023.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/14/2023]
Abstract
In a conventional electro-Fenton system with a single cathode, it is difficult to attain both high H2O2 generation by oxygen reduction reaction (ORR) and efficient iron reduction reaction (FRR). For this study, a flow-through dual-system electro-Fenton (FT-DEF) reactor was designed to overcome this shortcoming and promote mass transfer to effectively remove dimethyl phthalate (DMP) from water. By comparing the ORR and FRR performances of four different commercial carbon electrodes, the graphite felt with the highest amount of H2O2 generation was selected as the cathode of the ORR system, and the activated carbon fiber with the best Fe (III) reduction effect was selected as another cathode of the FRR system. The ORR system and FRR system operate simultaneously to form the DEF system. The FT-DEF system displayed many advantages compared with the conventional electro-Fenton (CI-ORR), presenting an improved efficiency and low energy consumption in phthalates removal. Under optimal reaction conditions, the FT-DEF system is capable to degrade 100% DMP in 20 min, which is 25% higher than the CI-ORR, while the reaction rate constant (0.271 min-1) is 16 times that of CI-ORR system (0.017min-1). In addition, the TOC removal of FT-DEF achieving 72.3% within 2 h with energy consumption of 2.35 kW h·m-3 is much better than CI-ORR that only achieves 18.3% TOC removal within 2 h with energy consumption of 8.13 kW h·m-3. Furthermore, control parameters and mechanism of FT-DEF were investigated in detail. The main intermediate products of DMP were analyzed by UPLC-ESI-HRMS, and the possible degradation path of DMP was speculated. In addition, application of FT-DEF in three types of natural water demonstrated its universal applicability of the system.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Zhiqiang Jiang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Weidong Lei
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China.
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G1M8, Canada
| |
Collapse
|
6
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|