1
|
Liu H, Cai F, Huang Z, Wang C, Li X, Wang X, Shen J. Seasonal hydrological variation impacts nitrogen speciation and enhances bioavailability in plateau lake sediments. WATER RESEARCH 2024; 271:122990. [PMID: 39700607 DOI: 10.1016/j.watres.2024.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Global warming has intensified the distinction between dry and wet seasons in monsoonal climates. The synergistic effect of high temperatures and rainfall during the wet season promotes the release of endogenous nitrogen (N) and eutrophication within lake ecosystems. However, the seasonal variations in sediments N speciation and bioavailability, and their intrinsic connection to release potential, remain unclear. This study employed sequential extraction method and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) to characterize extractable N (Ex-N) in Erhai Lake sediments during dry and wet seasons. The results indicated that ion-exchangeable organic form N (IEF-ON) serves as a substrate for microbial mineralization, with the highest proportion of protein-like substances (26.2%). The influx of N-containing polysaccharides and poly-N glycoproteins during the wet season further increased its bioavailability. Algal-derived N exists as the weak acid-extractable organic form N (WAEF-ON), which has the highest lipid proportion (11.7%) and the lowest double bond equivalent (DBE) values. Overall, elevated water temperatures and N input during the wet season accelerate both the mineralization rate of organic N (ON) and the content of labile N components. This potentially triggers a "priming effect" that could further activate the refractory N components in the sediments. Additionally, the wet season reduces sediment pH and redox potential, making WAEF-ON and strong alkali-extractable form N (SAEF-N) more labile and susceptible to release. This study reveals the adverse effects of seasonal variations on N sequestration in lake sediments, complicating the control of endogenous pollution release under the backdrop of climate change.
Collapse
Affiliation(s)
- Huaji Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China
| | - Feixuan Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China
| | - Zhongqing Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China
| | - Chen Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China
| | - Xueying Li
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China.
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China.
| |
Collapse
|
2
|
Ding R, Ouyang Z, Dong P, Su T, Wang J, Guo X. Insights into the photoreactivity mechanisms of micro-sized rubber particles with different structure: The crucial role of reactive oxygen species and released dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135250. [PMID: 39032182 DOI: 10.1016/j.jhazmat.2024.135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Micro-sized rubber particles (MRPs), as a significant component of tire wear particles (TWPs), increasingly garnered attention due to the potential ecological risks. However, the impact of photoaging of MRPs and the characteristics of the dissolved organic matter (DOM) derived from MRPs on the photoreactivity of co-existing pollutants is remain unclear. To bridge this knowledge gap, this study selected MRPs with different structure including butadiene rubber (BR), styrene butadiene rubber (SBR) and nitrile butadiene rubber (NBR) and took tetracycline (TC) as the target pollutant to firstly study potential effects of structural characteristics and active components of MRPs on TC photodegradation process under simulated sunlight irradiation. The results indicated that BR, NBR and SBR enhanced TC photodegradation to varying extents, with SBR having the most pronounced effect. This effect was attributed mainly to the high electron transport capacity and the generation of more triple excited DOM (3DOM*) of SBR, thereby producing more active species (•OH and 1O2) and significantly promoting TC photodegradation. Additionally, the unsaturated bonds and aromatic groups in MRPs-DOM was identified as another crucial factor influencing their photoreactivity. This study will provide a new perspective for understanding the potential ecological effects between MRPs and co-existing pollutants in the natural environment.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Pingshu Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Youngwilai A, Khan E, Phungsai P, Therdkiattikul N, Limpiyakorn T, Mhuantong W, Ratpukdi T, Supanchaiyamat N, Hunt AJ, Ngernyen Y, Siripattanakul-Ratpukdi S. Comparative investigation of known and unknown disinfection by-product precursor removal and microbial community from biological biochar and activated carbon filters. WATER RESEARCH 2024; 261:121994. [PMID: 38955037 DOI: 10.1016/j.watres.2024.121994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Biological activated carbon filter (BAC) is one of the most effective technologies for removing disinfection by-product (DBP) precursors from water. Biochar is a lower-cost medium that has the potential to replace granular activated carbon in BAC applications, thus leading to the development of biological biochar filter (BCF). This study compared BCF with BAC for the removal of DBP precursors using column experiments. Both BCF and BAC achieved the removal of DBP precursors, resulting in concentrations of all DBP formation potential below the World Health Organization guideline values for drinking water. Bromodichloromethane and unknown DBP precursor removal by BCF was comparable to that by BAC. However, BAC removed more chloroform and dichloroacetontrile precursors than BCF. For microbial community analysis, cell numbers in a bottom layer (inlet) of BCF and BAC columns were higher than those in the top layer. The abundances of Nordella and a microbial genus from Burkholderiaceae at the bottom layer showed a strong correlation to the number of DBP precursors removed and were comparable in BCF and BAC. This finding likely contributes to the similarities between DBPs species removed and the removal performances of some known and unknown DBP precursors by BCF and BAC. Overall results from this study revealed that biochar can be served as a low-cost and sustainable replacement of activated carbon in water filter for DBP precursor removal.
Collapse
Affiliation(s)
- Atcharaporn Youngwilai
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, 123 Mittapap Road, Muang, Khon Kaen 40002, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Phanwatt Phungsai
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, 123 Mittapap Road, Muang, Khon Kaen 40002, Thailand
| | - Nakharin Therdkiattikul
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, 123 Mittapap Road, Muang, Khon Kaen 40002, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, Enzyme Technology Research Team, Pathum Thani, Thailand
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, 123 Mittapap Road, Muang, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuvarat Ngernyen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, 123 Mittapap Road, Muang, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Qiu J, Lü F, Li X, Zhang H, Xu B, He PJ. Regular Tetrahedron Model for the Assessment of High-Resolution Mass Spectrometry Data of Four-Way Fractionated Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11685-11694. [PMID: 38905014 DOI: 10.1021/acs.est.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.
Collapse
Affiliation(s)
- Junjie Qiu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xiao Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
5
|
Chen Q, Lü F, Zhang H, Han Y, He P. Dissolved organic nitrogen is a key to improving the biological treatment potential of landfill leachate. WATER RESEARCH 2024; 254:121403. [PMID: 38447377 DOI: 10.1016/j.watres.2024.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Biological treatment is one of the most promising efficient, low-carbon and affordable approaches for the treatment of recalcitrantly degradable wastewater, such as landfill leachate. However, even the macroscopic molecular level analysis of dissolved organic matter (DOM) is limiting to the enhancement of biological treatment efficacy, and there is an urgent need for deeper exploration of DOM to gain insights into the key constraining substances. In the present study targeting at piercing leachate organic at molecular level, nitrogen-containing dissolved organic matter (DOMN) was identified to be the bottleneck that govern the biotreatment potential. The conclusion was made based on two series of experiments that compared the same anoxic-aerobic membrane bioreactor process (A process) operated stably at different regions, and compared with C process that coupling A process with a circulation aeration membrane bioreactor to improve aeration efficiency. The results confirmed that the relative abundance of DOMN was absolutely dominant among the three categories of DOM in all biologically treated samples, contributing to 60.36 %-65.81 % in removed-DOM, 60.33 %-70.95 % in refractory-DOM and 63.14 %-71.36 % in derived-DOM. Specifically, the high latitude A process had much lower DOMN removal rate than the low latitude A process (p < 0.05) and much higher refractory and derivatization rates than the low latitude A process (p < 0.05). DOM had similar results. No statistically significant differences were observed in the proportion of the three categories of DOM (DOMN), the elements composition, and the subcategory composition of the C process compared to the A process, in which the DOM (DOMN) derivation rate of NEC1-C (31.92 % and 33.41 %) was much higher than that of NEC1-A (20.88 % and 22.19 %). However, the AIwa and AImodwa of the derived-DOM (DOMN) were significantly higher in the C process than in the A process, which implied that excessive aeration did not enhance the biological treatment potential of the A process, but instead led to the proliferation of microorganisms and the secretion of extracellular polymer substances, which resulted in the derivation of more complex compounds. The results of the correlation analysis indicated that there were some regional differences in the molecular information of DOMN driven by climate temperature. In addition, it was worth mentioning that the nominal oxidation state of carbon (NOSCwa) of derived-DOMN in different regions of A process was noticeably higher than the corresponding DOM (p < 0.0001), implying that the derived-DOMN were still highly biodegradable, in other words, there was still great room for improving the biological treatment potential of landfill leachate. The present study provided a deeper insight and analysis of landfill leachate at the molecular level (DOMN) through multiple practical engineering cases, with a view to providing a theoretical basis for efficient optimization of biological treatment.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ying Han
- WELLE Environmental Group Co., Ltd., Xinbei District, Changzhou City, Jiangsu Province 213125, PR China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Sun L, Xu G, Tu Y, Zhang H, Zhang W, Zhu X, Liang Y, Li A, Xie X. Synergistic disinfection effects and reduction of disinfection by-products in water treatment using magnetic quaternized cyclodextrin polymer combined with chorine disinfection process. WATER RESEARCH 2024; 250:121078. [PMID: 38159540 DOI: 10.1016/j.watres.2023.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.
Collapse
Affiliation(s)
- Lin Sun
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Jiangyin City General Administration, Jiangyin 214433, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of the Environment Engineering, Nanjing Polytechnic Institute, Nanjing 210023, PR China
| | - Wenrui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ying Liang
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 211106, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Jiangxi Nanxin Environmental Protection Technology Co. Ltd, Jiujiang City, Jiangxi Province 330300, PR China.
| |
Collapse
|
7
|
Nguyen HVM, Tak S, Hur J, Shin HS. Fluorescence spectroscopy in the detection and management of disinfection by-product precursors in drinking water treatment processes: A review. CHEMOSPHERE 2023; 343:140269. [PMID: 37748659 DOI: 10.1016/j.chemosphere.2023.140269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/27/2023]
Abstract
Monitoring and prevention of the formation of disinfection by-products (DBPs) is paramount in drinking water treatment plants (DWTP) to ensure human health safety. This review provides an overview of how fluorescence techniques are developed to predict DBP formation and to evaluate the reduction of fluorescence components and DBPs following individual DWTP processes. Evidence has shown that common DBPs, nitrogenous DBPs and specific emerging DBPs exhibit positive linear relationships with terrestrial, anthropogenic, tryptophan-like, and eutrophic humic-like fluorescence. Due to the interrelationships of both regulated and emerging DBP types with fluorescence components, the limitations arise when attempting to predict emerging DBPs solely through linear relationships. Monitoring the reduction of DBP precursors after each treatment process can be achieved by studying the relationship between fluorescence components and DBPs. During the coagulation process, highest reduction rates are observed for terrestrial humic-like fluorescence. Advanced treatments such as granular, powdered, silver-impregnated activated carbon, magnetic ion exchange resins, and reverse osmosis, have revealed a significant reduction of fluorescent DBP precursors, ranging from 53% to 100%. During chlorination, the reduction rate follows the order: terrestrial humic-like > microbial humic-like > protein/tryptophan-like fluorescence. This review provides insights into the reduction of fluorescence signatures following individual DWTP processes, which offers information regarding DBP formation. These insights could assist in optimizing the treatment process to more effectively manage DBP formation. For the identification of emerging DBP generation, the utilization of advanced models is imperative to precisely predict emerging DBPs and to more accurately trace DBP precursors within DWTPs.
Collapse
Affiliation(s)
- Hang Vo-Minh Nguyen
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Seoul, 01811, South Korea
| | - Surbhi Tak
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| | - Hyun-Sang Shin
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Seoul, 01811, South Korea.
| |
Collapse
|
8
|
Gong B, Chen W, Sit PHL, Liu XW, Qian C. One-step fluorometric determination of multiple-component dissolved organic matter in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162200. [PMID: 36791859 DOI: 10.1016/j.scitotenv.2023.162200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous in aqueous environments and is composed of different components that play different but important roles in the migration and the fate of pollutants, emergence of the disinfect byproduct, thus requiring quantitative characterization. However, until now, simultaneous quantification of the main contents in DOM, i.e., saccharides, proteins, and humic substances, has been difficult, impeding us from understanding and predicting the environmental behaviors of typical pollutants. In this work, a fluorescence approach based on the excitation emission matrix (EEM), combined with a new algorithm, denoted matrix reconstruction coupled with prior linear decomposition (MR-PLD), was developed to quantify multiple DOM simultaneously. First, a set of simulated water samples consisting of glucose, tryptones, and humic acid (HA) were analyzed using MR-PLD to validate the feasibility of the method. The DOM components could be reliably determined with a higher accuracy than parallel factor analysis (PARAFAC) and Parallel Factor Framework-Linear Regression (PFFLR), also with a more convenient procedure than conventional PLD. Second, both actual simulated and experimental methods were performed to test the anti-interference performance of MR-PLD, indicating that the quantification of DOM would not be significantly impacted by other fluorophores. Finally, several actual water samples from natural waters and wastewater treatment plants were also analyzed to confirm the robustness of this method in actual aqueous environments. This study provides a new approach to characterize DOM with EEM, contributing to its convenient concentration monitoring and the further exploration of the environmental impacts.
Collapse
Affiliation(s)
- Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, China
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
9
|
Qadafi M, Rosmalina RT, Pitoi MM, Wulan DR. Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies. CHEMOSPHERE 2023; 316:137817. [PMID: 36640978 DOI: 10.1016/j.chemosphere.2023.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
This review discusses disinfection by-products' (DBPs) potential precursors, formation, and toxicity, alongside available research on the treatment of DBPs in Southeast Asian countries' water sources. Although natural organic matter (NOM) in the form of humic and fulvic acids is the major precursor of DBPs formation, the presence of anthropogenic organic matter (AOM) also plays essential roles during disinfection using chlorine. NOM has been observed in water sources in Southeast Asian countries, with a relatively high concentration in peat-influenced water sources and a relatively low concentration in non-peat-influenced water sources. Similarly, AOMs, such as microplastics, pharmaceuticals, pesticides, and endocrine-disrupting chemicals (EDCs), have also been detected in water sources in Southeast Asian countries. Although studies regarding DBPs in Southeast Asian countries are available, they focus on regulated DBPs. Here, the formation potential of unregulated DBPs is also discussed. In addition, the toxicity associated with extreme DBPs' formation potential, as well as the effectiveness of treatments such as conventional coagulation, filtration, adsorption, and ozonation in reducing DBPs' formation potential in Southeast Asian sources of water, is also analyzed.
Collapse
Affiliation(s)
- Muammar Qadafi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| | - Raden Tina Rosmalina
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Mariska M Pitoi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Diana Rahayuning Wulan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| |
Collapse
|
10
|
Wang R, Zhou J, Qu G, Wang T, Jia H, Zhu L. Formation of emerging disinfection byproducts from agricultural biomass-derived DOM: Overlooked health risk source. WATER RESEARCH 2023; 229:119482. [PMID: 36527871 DOI: 10.1016/j.watres.2022.119482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-derived dissolved organic matter (CDOM) are inevitably released to surface water during returning agricultural biomass carbon to farmland, which are potential precursors of disinfection byproducts (DBPs). In this study, CDOM was extracted from aerobic incineration ("OX") and anoxic pyrolysis ("PY") of three kinds of straw (wheat, corn, and rice), and the emerging DBPs from them were deciphered. The CDOM with molecular weight < 1 kDa in the OX and PY groups accounted for 53-87%, and it was higher in the PY group. A total 1343-2107 of CHO and 641-1761 of CHNO formulas were detected in the CDOM derived from the OX group, among which 74%-83% contained aromatic structures rich in oxygen containing groups. 1919-3289 of CHO and 785-1954 of CHNO formulas were observed in the PY group, and 77%-86% of them were lignins/CRAM-like compounds. Surprisingly, 765-2158 and 895-1648 of emerging DBPs were identified in the OX and PY groups, and the proportions of N-DBPs were 20.3-54.8% and 2.8-4.8%, respectively. Based on HOCl addition and Cl substitution mechanisms, the H/C ratios of the DBP precursors in the OX and PY groups were in the range of 0.2-1.5 and 0.6-2.0, respectively. The DBPs derived from the OX group exhibited higher cytotoxicity and genotoxicity due to the higher aromaticity and more N-DBPs. Thus, returning agricultural biomass carbon, particularly that produced by direct combustion, to farmland brought potential threat to drinking water safety.
Collapse
Affiliation(s)
- Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|