1
|
Chiera F, Costa G, Alcaro S, Artese A. An overview on olfaction in the biological, analytical, computational, and machine learning fields. Arch Pharm (Weinheim) 2024:e2400414. [PMID: 39439128 DOI: 10.1002/ardp.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Recently, the comprehension of odor perception has advanced, unveiling the mysteries of the molecular receptors within the nasal passages and the intricate mechanisms governing signal transmission between these receptors, the olfactory bulb, and the brain. This review provides a comprehensive panorama of odors, encompassing various topics ranging from the structural and molecular underpinnings of odorous substances to the physiological intricacies of olfactory perception. It extends to elucidate the analytical methods used for their identification and explores the frontiers of computational methodologies.
Collapse
Affiliation(s)
- Federica Chiera
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Loc. Condoleo, Belcastro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Vitko TG, Cowden S, Yin Z, Suffet IHM. Evaluation of three granular activated carbon filters for the treatment of collections foul air entering a water resource recovery facility. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11073. [PMID: 38978428 DOI: 10.1002/wer.11073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater sewer lines into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of three different granular activated carbon filter technologies, operating side by side, under similar operating conditions, each having an average 3.8-s contact time. The three activated carbon filters contained each 0.07 m3 of coconut, coal, and coconut mixed with permanganate media. The foul air entering the granular activated carbon filters contained 82% to 83% relative humidity. No moisture removal mechanism was used prior to treatment. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (hydrogen sulfide), rotten vegetables (methyl mercaptan), canned corn (dimethyl sulfide), rotten garlic (dimethyl disulfide), earthy/musty (2-methyl isoborneol and 2-isopropyl 3-methoxy pyrazine), and fecal (skatole and indole). This is the first time a study evaluates the removal of specific odors by simultaneously employing sensory analyses using the odor profile method, which defines the different odor characters and intensities, together with chemical analyses of the odorants causing these odors. The results show that the three granular activated carbon filters, before hydrogen sulfide breakthrough, provided significant improvement in odor intensity and odorant removal. Breakthrough was reached after 57 days for the coconut mixed with permanganate, 107 days for the coconut, and 129 days for the coal granular activated carbon filter. Breakthrough (the critical saturation point of the activated carbon media) was considered reached when the hydrogen sulfide percentage removal diminished to 90% and continued downward. The coconut mixed with permanganate granular activated carbon filter provided the best treatment among the media tested, achieving very good reduction of odorants, as measured by chemical analyses, and reasonable removal of odor intensities, as measured by the odor profile method. The coconut mixed with permanganate granular activated carbon is recommended for short-term odor control systems at sewer networks or emergency plant maintenance situations given its shorter time to breakthrough compared with the other granular activated carbons. The coal and coconut granular activated carbon filters are generally used as the last stage of an odor treatment system. Because of the observed poor to average performance in removing odorants other than hydrogen sulfide, the treatment stage(s) prior to the use of these granulated activated carbons should provide a good methyl mercaptan removal of at least 90% in order to avoid the formation of dimethyl disulfide, which, in the presence of moisture in the carbon filter, emit the characteristic rotten garlic odor. The differences observed between the performances based on odorant removal by chemical analysis compared with those based on sensorial analyses by the odor profile method indicate that both analyses are required to understand more fully the odor dynamics. PRACTITIONER POINTS: Three virgin granulated activated carbon media were evaluated in a field pilot unit using raw collections foul air. Coal, coconut, and coconut mixed with permanganate were tested until breakthrough. Samples were analyzed both chemically (odorants) and sensorially (odors). Coconut mixed with permanganate proved to be the media that better reduced odorants and odors.
Collapse
Affiliation(s)
- Tadeo G Vitko
- Orange County Sanitation District, Fountain Valley, California, USA
| | | | - Zhihang Yin
- Department of Civil and Environmental Engineering, School of Engineering, UCLA, Los Angeles, California, USA
| | - Irwin H Mel Suffet
- Department of Environmental Health Sciences, School of Public Health, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Zhang R, Deng Z, Li M, Cao K, Chang J, Rong D, Wang S, Huang S, Meng G. Delafossite CuGaO 2-Based Chemiresistive Sensor for Sensitive and Selective Detection of Dimethyl Disulfide. ACS Sens 2024; 9:1410-1418. [PMID: 38456391 DOI: 10.1021/acssensors.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Dimethyl disulfide (DMDS) is a common odor pollutant with an extremely low olfactory threshold. Highly sensitive and selective detection of DMDS in ambient humid air background, by metal oxide semiconductor (MOS) sensors, is highly desirable to address the increased public concern for health risk. However, it has still been a critical challenge up to now. Herein, p-type delafossite CuGaO2 has been proposed as a promising DMDS sensing material owing to its striking hydrophobicity (revealed by water contact angle measurement) and excellent partial catalytic oxidation properties (indicated by mass spectroscopy). The present CuGaO2 sensor shows a selective DMDS response, with satisfied humidity resistance performance and long-term stability at a relatively low operation temperature of 140 °C. An ultrahigh response of 100 to 10 ppm DMDS and a low limit of detection of 3.3 ppb could be achieved via a pulsed temperature modulation strategy. A smart sensing system based on a CuGaO2 sensor has been developed, which could precisely monitor DMDS vapor in ambient humid air, even with the presence of multiple interfering gases, demonstrating the practical application capability of MOS sensors for environmental odor monitoring.
Collapse
Affiliation(s)
- Ruofan Zhang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| | - Meng Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Kaifa Cao
- Anhui Kechuang Zhongguang Technology Co., Ltd., Hefei 230000, China
| | - Junqing Chang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Dandan Rong
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shuhua Huang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
4
|
Zheng H, Zhao W, Du X, Hua J, Ma Y, Zhao C, Lu H, Shi Y, Yao J. Determining the soil odor control area: A case study of an abandoned organophosphorus pesticide factory in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167436. [PMID: 37774866 DOI: 10.1016/j.scitotenv.2023.167436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Currently, soil odor-active substance screening and evaluation methods for contaminated sites are underdeveloped, with unclear treatment objectives and areas. Consequently, some sites suffer from odor issues during and even after remediation. This study focused on an organophosphorus pesticide factory site in Guangdong Province, China. It established a method of determining the odorant control area using a comprehensive approach combining instrumental and olfactory soil sample analyses. The main odor-active substances identified were ethylbenzene, phenol, m, p-xylene, styrene, toluene, and o-xylene, with odorant control values (the limit of odor-active substance contents) of 35.2, 28.1, 8.0, 11.3, 40.2 and 89.3 mg/kg respectively. Instrumental analysis of soil samples revealed 11 sampling points where the main odor-causing substances exceeded standard levels. Among the substances, ethylbenzene (1.48E+04 mg/kg) had the highest content, exceeding the limit up to 421-fold. Olfactory analysis indicated 14 sampling points with odor intensity surpassing the standard (OI > 2). Based on the instrumental analysis results and the odorant control value, the initial estimated odor control area (area with the risk of odor nuisance) was 5.64E+03 m2. Incorporating the olfactory analysis findings, the control area was adjusted by 1.25E+03 m2, leading to a final calculated soil odor control area of 6.89E+03 m2 for the study site. The comprehensive approach to analyzing soil samples for odor control can help evaluate the extent of soil odor pollution in contaminated sites and provide a scientific basis for effectively removing and managing odor-causing substances in soil.
Collapse
Affiliation(s)
- Hongguang Zheng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; China University of Mining & Technology-Beijing, School of Chemical and Environmental Engineering, Beijing 100083, China
| | - Weiguang Zhao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiaoming Du
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Hua
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yan Ma
- China University of Mining & Technology-Beijing, School of Chemical and Environmental Engineering, Beijing 100083, China
| | - Caiyun Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hefeng Lu
- Xingtai Ecological Environment Bureau Xingdong New Area Branch, Xingtai 054001, China
| | - Yi Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Juejun Yao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
5
|
Wang W, Zhang J, Li L, Zheng T. Evaluation of packing materials for thermophilic biofilter by refined evaluation scheme and application in the treatment of SO 2 with high temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119265. [PMID: 37837765 DOI: 10.1016/j.jenvman.2023.119265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The selection of packing materials is essential to maintaining biofilter performance in waste gas treatment. In this study, 12 types of packing materials were evaluated to determine the most suitable for the SO2 removal by a thermophilic biofilter. Scanning electron microscopy and the Baunauer-Emmett-Teller equation were utilized to identify the texture of the tested packing materials, while Fourier transform infrared spectroscopy and X-ray diffraction were applied to analyze the surface functional groups and crystal structures, respectively. Characteristics were accompanied by economic considerations. Results showed that the polyurethane sponge had better porous structure and water retention than other packing materials. In terms of microbial growth and carrier economy, it was chosen for the biofilter used to treat SO2. The performance of a full-scale thermophilic biofilter with polyurethane sponge as the packing material was investigated for the purification of SO2-containing gases at an inlet temperature of 55 °C. The biofilter effectively removed SO2 at an average removal rate of 93.36%. Thermophilic bacteria and sulfur-oxidizing bacteria, e.g., Bacillus thermophilus, could attached growth on the surface of selected packing materials and exhibited degradation activity. This study provides an effective and feasible method of packing material selection for biological waste gas treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tianlong Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Hayes JE, Barczak RJ, Mel Suffet I, Stuetz RM. The use of gas chromatography combined with chemical and sensory analysis to evaluate nuisance odours in the air and water environment. ENVIRONMENT INTERNATIONAL 2023; 180:108214. [PMID: 37769446 DOI: 10.1016/j.envint.2023.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Varieties of gas chromatography (GC) combined with chemical detection (CD) and sensory analysis at the odour detection port (ODP) for the evaluation of environmental odorants has steadily increased in application and sophistication; this has given rise to a plethora of techniques that cater to specific tasks. With this diversity of approaches in mind, there is a need to assess the critical points at which these approaches differ, as well as likely risks and factors that may affect them. These critical points explained within this review include sample preparation, GC separation techniques (with associated co-elution risks), how the elute is separated between CD and sensory analysis, the type of CD, the type of sensory analysis (with particular attention paid to its factors and guidelines), integrative data techniques, as well as how that data may be used. Additionally, this review provides commentary on the current state of the research space and makes recommendations based on how these analyses should be reported, the standardisation of nomenclature, as well as the impediments to the future goals of this research area. By careful consideration of the critical points of varying analytical processes and how best to communicate these findings, the quality of output within this area will improve. This review provides a benchmark for how GC-CD/sensory analysis should be undertaken and reported.
Collapse
Affiliation(s)
- James E Hayes
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Radosław J Barczak
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia; Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland.
| | - Irwin Mel Suffet
- Dept. of Env. Health Sciences, School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Richard M Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Wang Y, Shao L, Kang X, Zhang H, Lü F, He P. A critical review on odor measurement and prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117651. [PMID: 36878058 DOI: 10.1016/j.jenvman.2023.117651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.
Collapse
Affiliation(s)
- Yujing Wang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Liming Shao
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xinyue Kang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
8
|
Sekine Y, Oikawa D, Todaka M. Human skin gas profile of individuals with the people allergic to me phenomenon. Sci Rep 2023; 13:9471. [PMID: 37301918 PMCID: PMC10257688 DOI: 10.1038/s41598-023-36615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Recent studies have shown that some people claim that their skin gases provoke allergy-like reactions in people in their near vicinity. Such a phenomenon or symptom is called 'people allergic to me (PATM)'. Although numerous people suffer from PATM, the actual conditions are unknown. The aim of this study was to investigate the characteristics of human skin profiles in patients with PATM by measuring the dermal emission fluxes of 75 skin gases using passive flux sampler and gas chromatography/mass spectrometry. We found common features in the human skin gas profiles of 20 subjects with PATM, with a significant difference from those of 24 non-PATM subjects: greater emissions of petrochemicals, organosulfur compounds, and some aldehydes and lower emissions of aroma compounds and others. The ratio of toluene to benzaldehyde is considered a vital sign that suggests the fundamental of PATM. These findings indicate that PATM is a medically unexplained phenomenon or symptom worthy of further research, which requires an interdisciplinary approach.
Collapse
Affiliation(s)
- Yoshika Sekine
- Department of Chemistry, School of Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Daisuke Oikawa
- AIREX Inc., R&D Laboratory, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Michihito Todaka
- AIREX Inc., R&D Laboratory, Hiratsuka, Kanagawa, 259-1292, Japan
| |
Collapse
|
9
|
Cao T, Zheng Y, Dong H. Control of odor emissions from livestock farms: A review. ENVIRONMENTAL RESEARCH 2023; 225:115545. [PMID: 36822532 DOI: 10.1016/j.envres.2023.115545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Odor emission seriously affects human and animal health, and the ecological environment. Nevertheless, a systematic summary regarding the control technology for odor emissions in livestock breeding is currently lacking. This paper summarizes odor control technology, highlighting its applicability, advantages, and limitations, which can be used to evaluate and identify the most appropriate methods in livestock production management. Odor control technologies are divided into four categories: dietary manipulation (low-crude protein diet and enzyme additives in feed), in-housing management (separation of urine from feces, adsorbents used as litter additive, and indoor environment/manure surface spraying agent), manure management (semi-permeable membrane-covered, reactor composting, slurry cover, and slurry acidification), and end-of-pipe measures for air treatment (wet scrubbing of the exhaust air from animal houses and biofiltration of the exhaust air from animal houses or composting). Findings of this paper provide a theoretical basis for the application of odor control technology in livestock farms.
Collapse
Affiliation(s)
- Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| |
Collapse
|
10
|
Zhou Y, Vitko TG, Suffet IHM. A new method for evaluating nuisance of odorants by chemical and sensory analyses and the assessing of masked odors by olfactometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160905. [PMID: 36521625 DOI: 10.1016/j.scitotenv.2022.160905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The odor threshold concentration and the odor nuisance concentration of the nine persistent odorants at two wastewater treatment facilities were determined by Weber- Fechner curves for each odorant using dynamic olfactometry combined with the odor profile method. The odor threshold concentration results, representing each odorant's concentration at odor intensity of one (I = 1), were within range in the literature. The nuisance concentrations were determined by interpolation along the curves intersecting with the arbitrary odor intensity of three (I = 3). There is no reference that exists in the literature about determining odor nuisance concentrations for a complete set of odorants from any facility. The nuisance concentration results presented here are novel to odor control because they can provide information defining the nuisance odorant's isopleths in modeling and in designing effective odor control systems that avoid public nuisance. Dynamic olfactometry combined with the odor profile method was also used with actual foul air samples from different sources. When analyzed from raw to increased dilution, it was observed that the fecal and sulfur odors initially prominent (with no musty odors detected) gradually changed with increased dilution. Musty odors began to gradually appear while the fecal and sulfur odors became undetectable. We named this observation the "peeling of an onion effect". It is speculated that this occurs because the musty odors in the concentrated foul air sample are masked by the fecal and the sulfur odors.
Collapse
Affiliation(s)
- Yubin Zhou
- UCLA Dept. of Env. Health Sciences, School of Public Health, Los Angeles, CA 90095, United States
| | - Tadeo G Vitko
- Orange County Sanitation District, 10844 Ellis Avenue, Fountain Valley, CA 92708, United States.
| | - I H Mel Suffet
- UCLA Dept. of Env. Health Sciences, School of Public Health, Los Angeles, CA 90095, United States
| |
Collapse
|
11
|
The Comparison of Biotreatment and Chemical Treatment for Odor Control during Kitchen Waste Aerobic Composting. SEPARATIONS 2022. [DOI: 10.3390/separations9110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Odor ΨΩγemission has become mathvariant="normal" mathvariant="sans-serif-bold-italic" an important issue in kitchen waste management. Ammonia and hydrogen sulfide are the two most important odor sources as they contribute malodor and can cause health problems. As biotreatment and chemical treatment are two majorly applied technologies for odor control, in this study, they were used to remove ammonia and hydrogen sulfide and the performance of each process was compared. It was found that chemical absorption could efficiently eliminate both ammonia and hydrogenmathvariant="script" sulfide, and the removal efficiencies of ammonia and hydrogen sulfide highly depended on the pH of the adsorbent, contacting time, and gas and solution ratio (G/S). The ammonia-removal efficiency reached 100% within less than 2 s at G/S 600 and pH 0.1. The complete removal of hydrogen sulfide was achieved within 2 s at G/S 4000 and pH 13. Biotrickling filter showed better ability for hydrogen sulfide removal and the removal efficiency was 91.9%; however, the ammonia removal was only 73.5%. It suggests that chemical adsorption is more efficient compared to biotreatment for removing ammonia and hydrogen sulfide. In the combination of the two processes, biotrickling filter followed by chemical adsorption, the final concentrations of ammonia and hydrogen sulfide could meet the Level 1 standard of Emission Standards for Odor Pollution (China). The study provides a potential approach for odor control during kitchen waste aerobic composting.
Collapse
|