1
|
Zhang S, Yang G, Zhang Y, Yang C. High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Sci Rep 2024; 14:17490. [PMID: 39080455 PMCID: PMC11289115 DOI: 10.1038/s41598-024-68699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yiyun Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chao Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| |
Collapse
|
2
|
Seyoum MM, Ashworth AJ, Owens PR, Katuwal S, Lyte JM, Savin M. Leaching of antibiotic resistance genes and microbial assemblages following poultry litter applications in karst and non-karst landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172905. [PMID: 38703856 DOI: 10.1016/j.scitotenv.2024.172905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly recognized as a critical challenge affecting human, animal, and environmental health. Yet, environmental dynamics and transport of antibiotic resistance genes (ARGs) and microbial communities in karst and non-karst leachate following poultry litter land applications are not well understood. This study investigates impacts of broiler poultry litter application on the proliferation of ARGs (tetW, qnrS, ermB, sulI, and blaCTX-M-32), class 1 integron (intI1 i), and alterations in microbial communities (16S rRNA) within karst derived soils, which are crucial and under-researched systems in the global hydrological cycle, and non-karst landscapes. Using large, intact soil columns (45 cm diam. × 100 cm depth) from karst and non-karst landscapes, the role of preferential flow and ARG transport in leachate was enumerated following surface application of poultry litter and simulated rain events. This research demonstrated that in poultry litter amended karst soils, ARG (i.e., ermB and tetW) abundance in leachate increased 1.5 times compared to non-karst systems (p < 0.05), highlighting the influence of geological factors on ARG proliferation. Notably, microbial communities in karst soil leachate exhibited increased diversity and abundance, suggesting a potential linkage between microbial composition and ARG presence. Further, our correlation and network analyses identified relationships between leachate ARGs, microbial taxa, and physicochemical properties, underscoring the complex interplay in these environmentally sensitive areas. These findings illuminate the critical role of karst systems in shaping ARG abundance and pollutant dispersal and microbial community dynamics, thus emphasizing the need for landscape-specific approaches in managing ARG dissemination to the environment. This study provides a deeper understanding of hydrogeological ARG dynamics but also lays the groundwork for future research and strategies to mitigate ARG dissemination through targeted manure applications across agricultural landscapes.
Collapse
Affiliation(s)
- Mitiku Mihiret Seyoum
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Amanda J Ashworth
- USDA-ARS, Poultry Production and Product Safety Research Unit, Fayetteville, AR, USA.
| | - Phillip R Owens
- Dale Bumpers Small Farms Research Center, USDA-ARS, Booneville, AR, USA
| | - Sheela Katuwal
- USDA-ARS, National Laboratory for Agriculture and the Environment, Ames, IA, USA
| | - Joshua M Lyte
- USDA-ARS, Poultry Production and Product Safety Research Unit, Fayetteville, AR, USA
| | - Mary Savin
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Zuo X, Zhang S, Chen S, Sun H. Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. ENVIRONMENTAL TECHNOLOGY 2024; 45:2743-2752. [PMID: 36848218 DOI: 10.1080/09593330.2023.2185911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm2 of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10-2 for blaTEM) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| | - ShaoJie Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| | - Hui Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Wang C, Mao Y, Zhang L, Wei H, Wang Z. Insight into environmental adaptability of antibiotic resistome from surface water to deep sediments in anthropogenic lakes by metagenomics. WATER RESEARCH 2024; 256:121583. [PMID: 38614031 DOI: 10.1016/j.watres.2024.121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
The escalating antibiotic resistance threatens the long-term global health. Lake sediment is a vital hotpot in transmitting antibiotic resistance genes (ARGs); however, their vertical distribution pattern and driving mechanisms in sediment cores remain unclear. This study first utilized metagenomics to reveal how resistome is distributed from surface water to 45 cm sediments in four representative lakes, central China. Significant vertical variations in ARG profiles were observed (R2 = 0.421, p < 0.001), with significant reductions in numbers, abundance, and Shannon index from the surface water to deep sediment (all p-values < 0.05). ARGs also has interconnections within the vertical profile of the lakes: twelve ARGs persistently exist all sites and depths, and shared ARGs (e.g., vanS and mexF) were assembled by diverse hosts at varying depths. The 0-18 cm sediment had the highest mobility and health risk of ARGs, followed by the 18-45 cm sediment and water. The drivers of ARGs transformed along the profile of lakes: microbial communities and mobile genetic elements (MGEs) dominated in water, whereas environmental variables gradually become the primary through regulating microbial communities and MGEs with increasing sediment depth. Interestingly, the stochastic process governed ARG assembly, while the stochasticity diminished under the mediation of Chloroflexi, Candidatus Bathyarcaeota and oxidation-reduction potential with increasing depth. Overall, we formulated a conceptual framework to elucidate the vertical environmental adaptability of resistome in anthropogenic lakes. This study shed on the resistance risks and their environmental adaptability from sediment cores, which could reinforce the governance of public health issues.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Mao
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
5
|
Zuo X, Zhang S, Chen S. The role of water matrix on antibiotic resistance genes transmission in substrate layer from stormwater bioretention cells. WATER RESEARCH 2024; 251:121103. [PMID: 38183842 DOI: 10.1016/j.watres.2024.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Recently, extensive attention has been paid to antibiotic resistance genes (ARGs) transmission. However, little available literature could be found about ARGs transmission in stormwater bioretention cells, especially the role of water matrix on ARGs transmission. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) transmission behaviors in substrate layer from stormwater bioretention cells under different water matrices, including nutrient elements (e.g., carbon, nitrogen and phosphorus), water environmental conditions (dissolved oxygen (DO), pH and salinity, etc.) and pollution factors (like heavy metals, antibiotics and disinfectants), showing that ARGs conjugation frequency increased sharply with the enhancement of water matrices (expect DO and pH), while there were obvious increasing tendencies for all ARGs transformation frequencies under only the pollution factor. The correlation between dominant bacteria and ARGs transmission implied that conjugation and transformation of ARGs were mainly determined by Firmicutes, Bacteroidota, Latescibacterota, Chloroflexi and Cyanobacteria at the phylum level, and by Sphingomonas, Ensifer, IMCC26256, Rubellimicrobium, Saccharimonadales, Vicinamibacteraceae, Nocardioides, JG30-KF-CM66 at the genus level. The mentioned dominant bacteria were responsible for intracellular reactive oxygen species (ROS) and cell membrane permeability (CMP) in the substrate layer, where the amplification of intracellular ROS variation were the largest with 144 and 147 % under the condition of TP and salinity, respectively, and the one of CMP variation were the highest more than 165 % under various pollution factors. Furthermore, both increasing DO and reducing salinity could be potential approaches for the inhibition of ARGs transmission in bioretention cells taking into account the simultaneous removal of conventional pollutants.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - SongHu Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - ShaoJie Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Zhou SYD, Yang K, Neilson R, Li H, Li HZ, Zhou YY, Liu J, Su JQ, Huang FY. Long-term seawall barriers lead to the formation of an urban coastal lagoon with increased antibiotic resistome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119721. [PMID: 38043315 DOI: 10.1016/j.jenvman.2023.119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Urbanization has increased the spread of antibiotic resistance genes (ARGs) impacting urban aquatic ecosystems and threatening human health. However, an overview of the antibiotic resistome in artificial coastal lagoons formed by coastal seawall construction is unclear. This study investigated the resistome of sediment in a coastal lagoon, established for over 60 years and found that the composition of the resistome in the lagoon sediments associated with the seawall significantly differed from that of marine sediment external to the seawall. Moreover, the diversity, number, relative abundance, and absolute abundance of the antibiotic resistome in the lagoon sediments were significantly higher compared to marine sediment. Network analyses revealed that more co-occurrences were found in lagoon sediment between bacterial communities, ARGs and mobile genetic elements (MGEs) than in marine sediments, suggesting that bacteria in lagoon sediments may be associated with multiple antibiotic resistances. Random forest and structural equation models showed that an increase in the absolute abundance of MGEs had a concomitant effect on the absolute abundance and diversity of ARGs, whereas increasing salinity decreased the absolute abundance of ARGs. This study provides a basis to assess the risk of resistome diffusion and persistence in an artificial coastal lagoon.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China; Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Kai Yang
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Hu Li
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hong-Zhe Li
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Yan-Yan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Fu-Yi Huang
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
7
|
Bodus B, O'Malley K, Dieter G, Gunawardana C, McDonald W. Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167195. [PMID: 37777137 DOI: 10.1016/j.scitotenv.2023.167195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Green stormwater infrastructure is a growing management approach to capturing, infiltrating, and treating runoff at the source. However, there are several emerging contaminants for which green stormwater infrastructure has not been explicitly designed to mitigate and for which removal mechanisms are not yet well defined. This is an issue, as there is a growing understanding of the impact of emerging contaminants on human and environmental health. This paper presents a review of five emerging contaminants - antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature - and seeks to improve our understanding of how green stormwater infrastructure is impacted by and can be designed to mitigate these emerging contaminants. To do so, we present a review of the source and transport of these contaminants to green stormwater infrastructure, specific treatment mechanisms within green infrastructure, and design considerations of green stormwater infrastructure that could lead to their removal. In addition, common removal mechanisms across these contaminants and limitations of green infrastructure for contaminant mitigation are discussed. Finally, we present future research directions that can help to advance the use of green infrastructure as a first line of defense for downstream water bodies against emerging contaminants of concern.
Collapse
Affiliation(s)
- Benjamin Bodus
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Kassidy O'Malley
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Greg Dieter
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Charitha Gunawardana
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Walter McDonald
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| |
Collapse
|
8
|
Minch B, Akter S, Weinheimer A, Rahman MS, Parvez MAK, Rezwana Rahman S, Ahmed MF, Moniruzzaman M. Phylogenetic diversity and functional potential of large and cell-associated viruses in the Bay of Bengal. mSphere 2023; 8:e0040723. [PMID: 37902318 PMCID: PMC10732071 DOI: 10.1128/msphere.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The BoB, the world's largest bay, is of significant economic importance to surrounding countries, particularly Bangladesh, which heavily relies on its coastal resources. Concurrently, the BoB holds substantial ecological relevance due to the region's high vulnerability to climate change-induced impacts. Yet, our understanding of the BoB's microbiome in relation to marine food web and biogeochemical cycling remains limited. Particularly, there are little or no data on the viral diversity and host association in the BoB. We examined the viral community in two distinct BoB coastal regions to reveal a multitude of viral species interacting with a wide range of microbial hosts, some of which play key roles in coastal biogeochemical cycling or potential pathogens. Furthermore, we demonstrate that the BoB coast harbors a diverse community of large and giant viruses, underscoring the importance of investigating understudied environments to discover novel viral lineages with complex metabolic capacities.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| | - Salma Akter
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | | | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Zuo X, Zhang S, Kong F, Xu Q. Application of electrochemical oxidation for the enhancement of antibiotic resistant bacteria removal in stormwater bioretention cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160477. [PMID: 36436643 DOI: 10.1016/j.scitotenv.2022.160477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Recently, increasing attention has been paid to the removal of antibiotic resistant bacteria (ARB) during electrochemical advanced oxidation processes. However, there is still no available literature about the application of electrochemical oxidation (EO) to enhance ARB removal in stormwater bioretention cells. Batch experiments were conducted to investigate target ARB (E. coli K-12 carrying blaTEM, tetR and aphA) removals in bioretention cells with different current densities and ratios of air to water (A/W). ARB removals for bioretention cells with 17.6 μA/m2 of current density and 24:1 of A/W ratio was the largest with 5.28 log reduction, which was obviously higher than the one (3.68 log reduction) in the control (without EO). H2O2 production could be responsible for ARB removals in the used bioretention cells, where H2O2 levels increased at first and then decreased with the increase of current densities and A/W ratios. The evaluation for the application of EO implied that the highest antibiotic resistance (AR) conjugation frequency (3.8 × 10-3) at 3.5 μA/m2 of current density and 48:1 of A/W ratios was 124.5 % of the one in the control, while the largest AR transformation frequencies at 17.6 μA/m2 of current density and 48:1 of A/W ratios was 366.9 % (tetR) and 216.2 % (aphA) of the corresponding in the control, and there were still stable for both dominant microflora and metabolic activities in bioretention cells with electricity and aeration, suggesting that EO could be promising for the enhancement of ARB removals in bioretention cells.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China.
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China
| | - FanXin Kong
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China
| | - QiangQiang Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China
| |
Collapse
|
10
|
He F, Ma B, Wang C, Chen Y, Hu X. Adsorption of Pb(II) and Cd(II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|