1
|
Malkoske TA, Cai YH, Bone SE, Schäfer AI. Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation. WATER RESEARCH 2025; 272:122938. [PMID: 39729913 DOI: 10.1016/j.watres.2024.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024]
Abstract
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively. Bench-scale filtration experiments were performed using feed solutions containing Ca and ten different types of organic matter (OM), as well as the common scalants, calcium carbonate (CaCO3) and calcium sulfate (CaSO4). Osmotic backwash (OB) was performed at regular intervals for fouling control. Ca-OM aggregation resulted in greater flux decline and lower flux recovery during OB than Ca conditioning of membranes followed by filtration of feed solution with OM. Linear combination fitting (LCF) of XANES absorption spectra from fouled membranes indicated that Ca-OM aggregation preferentially occurred for OM types that exhibited both high carboxylic group and negative charge density. Consequently, these OM types exhibited greater deposition of Ca and TOC on the membrane surface when compared to other OM types. For the coexistence of scalants and OM, Ca speciation within the fouling layer was characteristic of both Ca bound to the membrane (i.e. potential bridging, charge screening) as well as Ca-OM aggregation and deposition mechanisms, while a range of crystal polymorphs were observed to occur simultaneously. XRF and XANES represent powerful tools for the elucidation of NF fouling mechanisms by quantification of Ca deposition as well as Ca speciation. Fouling control methods should target OM types with high carboxyl group density and negative charge to neutralize or eliminate interactions with Ca.
Collapse
Affiliation(s)
- Tyler A Malkoske
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yang-Hui Cai
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sharon E Bone
- Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
Ramanamane N, Pita M, Sob B. Advanced Low-Cost Natural Materials for High-Performance Oil-Water Filtration Membranes: Achievements, Challenges, and Future Directions. MEMBRANES 2024; 14:264. [PMID: 39728714 DOI: 10.3390/membranes14120264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications. Consequently, there is a rising interest in creating innovative ceramic membranes using affordable materials and simpler production techniques. This study reviewed the oil-water ceramic membranes utilizing affordable natural ceramic materials aimed at improving membrane performance. It focused on reviewing the environmentally friendly and economically viable membranes derived from natural ceramic resources as an alternative to conventional synthetic membranes. These natural ceramic materials possess crucial properties like hydrophilicity and oleophobicity, which are vital for effective oil-water separation. The ceramic membranes were reviewed for their filtration performance and advantages. It was reported that these natural ceramic material-based membranes demonstrate superior separation efficiency, and strong mechanical stability, making them promising candidates for sustainable water treatment.
Collapse
Affiliation(s)
- Nthabiseng Ramanamane
- Department of Mechanical Engineering, Bioresources, and Biomedical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida 1710, South Africa
| | - Mothibeli Pita
- Department of Mechanical Engineering, Bioresources, and Biomedical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida 1710, South Africa
| | - Baonhe Sob
- Department of Mechanical Engineering, Mount Vernon Nazarene University, 800 Martinsburg Rd, Mt Vernon, OH 43050, USA
| |
Collapse
|
3
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
4
|
Cai YH, Gopalakrishnan A, Dong Q, Schäfer AI. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter. WATER RESEARCH 2024; 253:121241. [PMID: 38377922 DOI: 10.1016/j.watres.2024.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Strontium (Sr) removal from water is required because excessive naturally occurring Sr exposure is hazardous to human health. Climate and seasonal changes cause water quality variations, in particular quality and quantity of organic matter (OM) and pH, and such variations affect Sr removal by nanofiltration (NF). The mechanisms for such variations are not clear and thus OM complexation and speciation require attention. Sr removal by NF was investigated with emphasis on the role of OM (type and concentration) and pH (2-12) on possible removal mechanisms, specifically size and/or charge exclusion as well as solute-solute interactions. The filtration results show that the addition of various OM (10 types) and an increase of OM concentration (2-100 mgC.L-1) increased Sr removal by 10-15%. The Sr-OM interaction was enhanced with increasing OM concentration, implying enhanced size exclusion via Sr-OM interaction as the main mechanism. Such interactions were quantified by asymmetric flow field-flow fractionation (FFFF) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). Both extremely low and high pH increased Sr removal due to the enhanced charge exclusion and Sr-OM interactions. This work elucidated and verified the mechanism of OM and pH on Sr removal by NF membranes.
Collapse
Affiliation(s)
- Yang-Hui Cai
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Qilin Dong
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
AlSawaftah N, Abuwatfa W, Darwish N, Husseini GA. A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. MEMBRANES 2022; 12:membranes12121271. [PMID: 36557178 PMCID: PMC9787789 DOI: 10.3390/membranes12121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 05/12/2023]
Abstract
Water scarcity is an increasing problem on every continent, which instigated the search for novel ways to provide clean water suitable for human use; one such way is desalination. Desalination refers to the process of purifying salts and contaminants to produce water suitable for domestic and industrial applications. Due to the high costs and energy consumption associated with some desalination techniques, membrane-based technologies have emerged as a promising alternative water treatment, due to their high energy efficiency, operational simplicity, and lower cost. However, membrane fouling is a major challenge to membrane-based separation as it has detrimental effects on the membrane's performance and integrity. Based on the type of accumulated foulants, fouling can be classified into particulate, organic, inorganic, and biofouling. Biofouling is considered the most problematic among the four fouling categories. Therefore, proper characterization and prediction of biofouling are essential for creating efficient control and mitigation strategies to minimize the damage associated with biofouling. Moreover, the use of artificial intelligence (AI) in predicting membrane fouling has garnered a great deal of attention due to its adaptive capability and prediction accuracy. This paper presents an overview of the membrane biofouling mechanisms, characterization techniques, and predictive methods with a focus on AI-based techniques, and mitigation strategies.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad Abuwatfa
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Naif Darwish
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|