1
|
Mao R, Hu K, Kan H, Yan L, Chen R, Zhao X. Self-catalytic enhancement of Cu-EDTA decomplexation and simultaneous Cu recovery via a dual-cathode electrochemical process. WATER RESEARCH 2024; 268:122775. [PMID: 39546976 DOI: 10.1016/j.watres.2024.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Heavy metals that are readily chelated with coexisting organic ligands in industrial wastewaters impose threats to environment and human health but are also valuable metal resources. Traditional treatment methods generally require additional chemicals and generate secondary contaminants. Here, a reagent-free dual-cathode electrochemical system was proposed for the efficient destruction of Cu-organic complexes and synchronous cathodic recovery of Cu, whereby in situ production of H2O2 at carbon aerogel (CA) cathode was coupled with the reduction of Cu(II) to Cu(I) and finally to Cu(0) at Ti cathode. The intermediate Cu(II) complexes enabled the self-reinforced degradation owing to their higher activities toward •OH generation by activating H2O2 in contrast to initial Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The enhanced production of Cu(I) by Ti cathode facilitated both •OH and Cu(III) formation, and the copper redox cycle was realized in the self-reinforced system, maintaining its sustainable catalytic activity. The energy cost of the dual-cathode system is 0.011 kWh/g for decomplexation and 0.057 kWh/g for Cu recovery, which is much lower than single Ti or CA cathode system. This established process provides a prospective approach for cost-effective destruction of chelating metal complexes and metal resources recovery from heavy metal wastewaters.
Collapse
Affiliation(s)
- Ran Mao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacture, Beijing University of Technology, Beijing 100124, PR China
| | - Hongshuai Kan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA
| | - Rongsen Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacture, Beijing University of Technology, Beijing 100124, PR China
| | - Xu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Yang L, Zhao J, Xu D, Luo X, Han Y, Tang X, Liang H. Rational design of a hydrophilic nanoarray-structured electro-Fenton membrane for antibiotics removal and fouling mitigation: An intensified catalysis process in an oxygen vacancy-mediated cathodic microreactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134138. [PMID: 38574657 DOI: 10.1016/j.jhazmat.2024.134138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Electro-Fenton membranes (EFMs) can synchronously realize organic micropollutants destruction and fouling mitigation in a single filtration process with the assistance of hydroxyl radicals (•OH). Herein, a nanoarray-structured EFM (NS-EFM) was designed by assembling Fenton reactive CoFe-LDH nanowires using a low-temperature hydrothermal method. Combined with a defect-engineering strategy, the oxygen vacancies (OVac) in the CoFe-LDH nanoarrays were tailored by manipulating the stoichiometry of cations to optimize the Fenton reactivity of NS-EFMs. The optimized NS-EFM demonstrated exceptional sulfamethoxazole (SMX) removal (99.4%) and fast degradation kinetics (0.0846 min-1), but lower energy consumption (0.22 kWh m-3 per log removal of SMX). In-depth mechanism analysis revealed that the intrinsic electronic properties of OVac endowed NS-EFM with enhanced reactivity and charge transferability at metallic active sites of CoFe-LDH, thereby intensifying •OH generation. Besides, the nanoarray-structured NS-EFM built a confined microreactor space, leading to expedited •OH microflow to SMX. Meanwhile, the hydrophilic nature of CoFe-LDH nanoarrays synergistically contributed to the high flux recovery (95.0%) and minimal irreversible membrane fouling (5.0%), effectively alleviating membrane fouling within pores and on surfaces. This study offers insights into the potential of defect engineering as a foundational strategy in the design of EFMs, significantly advancing the treatment of organic pollutants and control of membrane fouling.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Zhao
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Daliang Xu
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yonghui Han
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaobin Tang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
3
|
Qi Y, Zeng J, Tao J, Liu R, Fu R, Yan C, Liu X, Liu N, Hao Y. Unraveling the mechanisms behind sodium persulphate-induced changes in petroleum-contaminated aquifers' biogeochemical parameters and microbial communities. CHEMOSPHERE 2024; 351:141174. [PMID: 38218242 DOI: 10.1016/j.chemosphere.2024.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.
Collapse
Affiliation(s)
- Yuqi Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Jun Zeng
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renchuan Fu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chao Yan
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
4
|
Min X, Zhang K, Chen J, Chai L, Lin Z, Zou L, Liu W, Ding C, Shi Y. Bacteria-driven copper redox reaction coupled electron transfer from Cr(VI) to Cr(III): A new and alternate mechanism of Cr(VI) bioreduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132485. [PMID: 37714006 DOI: 10.1016/j.jhazmat.2023.132485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023]
Abstract
Cr(VI) released into the environment inevitably co-exists with other contaminants, such as heavy metal ions, thus altering the performance of bacteria for Cr(VI) reduction; however, the mechanism underlying Cr(VI)-reducing bacterial response to heavy metal ions remains elusive. Herein, we investigate the toxic effects of Cu(II) and Cr(VI) on Cr(VI)-reducing bacterium Pannonibacter phragmitetus D-6 (hereafter D-6), which changes the primary metabolic pattern of Cr(VI). At Cu(II) concentrations of 10-100 mg/L, the efficiency of Cr(VI) reduction increases significantly. The co-exposure of Cr(VI) and Cu(II) induces D-6 to preferentially respond to Cu(II) through electrostatic forces, which is then reduced to Cu(I) outside and inside the bacterial cells. The original pathways for Cr(VI) reduction are weakened via downregulating genes related to Cr(VI) transport and reduction. A new mechanism involving Cu(II)-mediated electron transfer from D-6 to Cr(VI) is elucidated. Specially, Cu(II) accumulates around the cells as an electron shuttle and promotes Cr(VI) reduction. Genes encoding cytochromes involved in electron transfer are significantly up-regulated, thus promoting Cu(II) reduction. The Cu(II)/Cu(I) redox cycle ensures the continuous bioremoval of Cr(VI) in a cycle test. This study reveals an overlooked mechanism for Cr(VI) reduction, which provides theoretical guidance for designing practical microbial process to remediate Cr(VI) contamination.
Collapse
Affiliation(s)
- Xiaoye Min
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jianxin Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
5
|
Gao Y, Wang P, Chu Y, Kang F, Cheng Y, Repo E, Feng M, Yu X, Zeng H. Redox property of coordinated iron ion enables activation of O 2 via in-situ generated H 2O 2 and additionally added H 2O 2 in EDTA-chelated Fenton reaction. WATER RESEARCH 2024; 248:120826. [PMID: 37976952 DOI: 10.1016/j.watres.2023.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
The Fenton system was a generation system of reactive oxygen species via the chain reactions, which employed H2O2 and O2 as radical precursors and Fe2+/Fe3+ as electron-donor/acceptor for triggering or terminating the generation of radicals. Recent work mainly emphasized the Fe2+- activated H2O2 and the application of in-situ generated •OH, while neglecting other side-reactions. In this work, EDTA (Ethylene diamine tetraacetic acid) was employed as a chelating agent of iron ions, which simultaneously changed the redox property of coordinated iron. The Fe2+-EDTA complexes in the presence of dissolved oxygen enabled the two-electron transfer from Fe2+ to O2 and the in-situ production of H2O2, which further activate H2O2 for yielding •OH. Meanwhile, coordinated Fe3+ exhibited non-negligible reactivity toward H2O2, which was higher than that of free Fe3+ in the traditional Fenton system. The complexation of EDTA with Fe3+ could enhance the Fe2+ generation reaction by the H2O2, accompanied by the O2•- formation. The enhancement of O2•- formation and Fe2+-EDTA regeneration induced the subsequent H2O2 activation by Fe2+-EDTA, thus accelerating the Fe3+-EDTA/Fe2+-EDTA cycle for simultaneously producing O2•- and •OH. To sum up, the EDTA-chelated Fenton system extended the applicable pH range to circumneutral/alkaline level and tuned the redox property of coordinated iron for diversifying the •OH production routes. The research reinterpreted the chain reactions in the Fenton system, revealing another way to enhance the radical production or other property of the Fenton/Fenton-like system.
Collapse
Affiliation(s)
- Yuan Gao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Pengyi Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yu Chu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Fan Kang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yue Cheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), Lappeenranta FI-53850, Finland
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, PR China
| | - Huabin Zeng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
6
|
Wu Y, Wang X, She T, Li T, Wang Y, Xu Z, Jin X, Song H, Yang S, Li S, Yan S, He H, Zhang L, Zou Z. Iron 3D-Orbital Configuration Dependent Electron Transfer for Efficient Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306464. [PMID: 37658488 DOI: 10.1002/smll.202306464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (FeOh ) and tetrahedral (FeTd ) sites in spinel ZnFe2 O4 and FeAl2 O4 , respectively. ZnFe2 O4 (136.58 min-1 F-1 cm2 ) presented higher specific activity than FeAl2 O4 (97.47 min-1 F-1 cm2 ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe2 O4 has a larger bond order to decompose PMS. Using this descriptor, high-spin FeOh is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin FeTd prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of 1 O2 on ZnFe2 O4 and O2 •- on FeAl2 O4 via quenching experiments. Electrochemical determinations reveal that FeOh has superior capability than FeTd for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe2 O4 is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.
Collapse
Affiliation(s)
- Yijie Wu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, P. R. China
| | - Tiantian She
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Taozhu Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yunheng Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhe Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Jin
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Haiou Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shaogui Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shiyin Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shicheng Yan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Huan He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Limin Zhang
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, School of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|