1
|
Lv H, Yang M, Cheng Y, Li K, Huang T, Wen G. Response of the algal-bacterial community to thermal stratification succession in a deep-water reservoir: Community structure, co-assembly patterns, and functional groups. ENVIRONMENTAL RESEARCH 2024; 261:119688. [PMID: 39074771 DOI: 10.1016/j.envres.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Thermal stratification in lakes and reservoirs may intensify and become more persistent with global warming. Periodic thermal stratification is a naturally occurring phenomenon that indicates a transition in aquatic ecosystem homeostasis, which could lead to the deterioration of water quality and impaired aquatic communities. However, the responses of communities and associated nutrient cycling processes to periodic thermal stratification are still poorly understood. This study delved into the changes in water quality, algal-bacterial communities, and functional diversity influenced by thermal stratification succession, and their relationship with nutrient cycling. The results indicated that the apparent community dynamics were driven by environmental factors, with ammonium (NH4+) and nitrate (NO3--N) being the most important factors that influenced the algal and bacterial community structure, respectively. Ecological niche widths were narrower during thermal stratification, exacerbating the antagonism of the communities, and stochastic processes dominated community assembly. Then, the complexities of the co-occurrence network decreased with succession. Algal community assembly became more deterministic, while bacterial assembly became more stochastic. Moreover, the roles of algal-bacterial multidiversity in nutrient cycling differed: bacterial diversity enhanced nutrient cycling, whereas algal diversity had the opposite effect. These findings broadened our understanding of microbial ecological mechanisms to environmental change and provided valuable ecological knowledge for securing water supplies in drinking water reservoirs.
Collapse
Affiliation(s)
- He Lv
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meng Yang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
2
|
Liu J, Yang S, Shang Y, Chen X, Qiu S, Xu G, Lu G, Wang Y. Changes in chemical characteristics and toxicity of fluoxetine and humic acid during chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175847. [PMID: 39209177 DOI: 10.1016/j.scitotenv.2024.175847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The coexistence of emerging pollutants and dissolved organic matter in wastewater complicates the transformation and generation of disinfection byproducts (DBPs) during chlorination treatment, which is essential for effective water quality evaluation and chlorination optimization. This study used fluoxetine (FLX) and humic acid (HA) as representative substances to analyze changes in their chemical characteristics and zebrafish embryonic developmental toxicity under different chlorination conditions. The analysis of the fluorescence characteristics and Fourier transform ion cyclotron resonance mass spectrometry indicated that chlorination treatment increased the aromatic compound content of the HA solution. FLX addition further increased the presence of aromatic ring structures and oxidized molecules, resulting in the formation of numerous Cl-DBPs with highly unsaturated and phenolic structures. Moreover, different responses in zebrafish embryo development and behavior were found with FLX, HA, and FLX + HA exposures. Cardiotoxicity was linked to changes in the concentration of cTn-I protein and expression of various genes. Prolonged chlorination conditions showed higher toxicities. Correlation analysis found a weak relation between chemical indicators and toxicity data, indicating that both analysis methods need to be considered when analyzing the impact of the chlorination. Further, a combination of chemical analyses and toxicity tests revealed that the FLX + HA solution with chlorination conditions of 3 mg/L for 30 min had lower chemical and toxic effects in this experiment. This study provides valuable scientific insights for the safe discharge of chlorinated water containing FLX and dissolved organic matter, as well as guidance for optimizing chlorination parameters in wastewater treatment.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Siyuan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yujia Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Siyan Qiu
- Hangzhou South Drainage Engineering Construction Management Service Center, Hangzhou 310000, PR China
| | - Guanhua Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
3
|
Wang R, Cheng Y, Wan Q, Cao R, Cai J, Huang T, Wen G. Emergency control of dinoflagellate bloom in freshwater with chlorine enhanced by solar radiation: Efficiency and mechanism. WATER RESEARCH 2024; 265:122275. [PMID: 39163711 DOI: 10.1016/j.watres.2024.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Dinoflagellate requires a lower temperature and blooms frequently in the spring and autumn compared to regular cyanobacteria. The outbreak of dinoflagellate bloom will also lead to the death of some aquatic organisms. However, research on freshwater dinoflagellates is still lacking due to the challenges posed by classification and culture in laboratory. The removal effect and mechanism of Peridinium umbonatum (P. umbonatum, a typical dinoflagellate) were investigated using solar/chlorine in this study. The effect of simulated solar alone on the removal of algae was negligible, and chlorine alone had only a slight effect in removing algae. However, solar/chlorine showed a better removal efficiency with shoulder length reduction factor and kmax enhancement factor of 2.80 and 3.8, respectively, indicating a shorter latency period and faster inactivation rate for solar/chlorine compared to solar and chlorine alone. The removal efficiency of algae gradually increased with the chlorine dosage, but it dropped as the cell density grew. When the experimental temperature was raised to 30 °C, algal removal efficiency significantly increased, as the temperature was unsuitable for the survival of P. umbonatum. Attacks on cell membranes by chlorine and hydroxyl radicals (•OH) produced by solar/chlorine led to a decrease in cell membrane integrity, leading to a rise in intracellular reactive oxygen species and an inhibition of photosynthetic and antioxidant systems. Cell regeneration was not observed in either the chlorine or solar/chlorine systems due to severe cell damage or cysts formation. In addition, natural solar radiation was demonstrated to have the same enhancing effect as simulated solar radiation. However, the algal removal efficiency of solar/chlorine in real water was reduced compared to 119 medium, mainly due to background material in the real water substrate that consumed the oxidant or acted as shading agents.
Collapse
Affiliation(s)
- Ru Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jie Cai
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
4
|
Cao R, Wan Q, Wang Y, Huang T, Wen G. Molecular response and adaptation mechanism of Microcystis aeruginosa under metalimnetic oxygen minimum conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136360. [PMID: 39486326 DOI: 10.1016/j.jhazmat.2024.136360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Reservoirs are important drinking water sources. The metalimnetic oxygen minimum (MOM) usually occurs periodically in summer and autumn in deep-water reservoirs due to algae blooms and thermal stratification. This study aimed to explore the physiological and molecular responses of Microcystis aeruginosa (M. aeruginosa) under MOM conditions (darkness coupled with low dissolved oxygen (DO) concentration, hydrostatic pressure, and nutrient starvation). The comprehensive response of M. aeruginosa suggested that MOM conditions led to an immediate collapse of gas vesicles. This was followed by a gradual inhibition of photosynthesis by disturbing the electron transport chain and a significant downregulation of energy metabolism and carbohydrate metabolism. The active cells were approximately 5 % and > 45 % under MOM aerobic (3.0-7.0 mg/L DO) and anaerobic conditions (< 0.5 mg/L DO), respectively, for 20 days. In addition, a single exposure to darkness or pressure accelerated the decay of M. aeruginosa cells; however, MOM conditions with a low DO concentration had the opposite effect. The survival of M. aeruginosa cells under MOM conditions could be attributed to stringent response and the activation of HIF-1 signal when DO concentration decreased to < 2.0 mg/L by promoting the formation of cellular quiescence and resource redistribution. This study sheds light on the molecular response and adaptation mechanism of M. aeruginosa under MOM conditions.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ye Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Bai Y, Li K, Cao R, Xu H, Wang J, Huang T, Wen G. Changes of characteristics and disinfection by-products formation potential of intracellular organic matter with different molecular weight in metalimnetic oxygen minimum. CHEMOSPHERE 2024; 354:141718. [PMID: 38490607 DOI: 10.1016/j.chemosphere.2024.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Metalimnetic oxygen minimum (MOM) occurs in reservoirs or lakes due to stratification and algal blooms, which has low dissolved oxygen (DO) levels and leads to the deterioration of water quality. The transformation mechanism and the impact on the water quality of intracellular organic matter (IOM) derived from algae are poorly understood under MOM conditions. In this study, IOM extracted by Microcystis aeruginosa was divided into five components according to molecular weight (MW), and the changes of characteristics and correlated disinfection by-products formation potential (DBPFP) were analyzed and compared under MOM conditions. The removal efficiency of dissolved organic carbon (DOC) in the <5 kDa fraction (66.6%) was higher than that in the >100 kDa fraction (41.8%) after a 14-day incubation under MOM conditions. The same tendency also occurred in Fmax and DBPFP. The decrease in Fmax was mainly due to the decline in tryptophan-like and tyrosine-like for all IOM fractions. The diversity of microorganisms degrading the MW > 100 kDa fraction was lower than others. Besides low MW fractions, these findings indicated that more attention should be paid to high MW fractions which were resistant to biodegradation under MOM conditions during water treatment.
Collapse
Affiliation(s)
- Yuannan Bai
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
6
|
Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, Lin H. Carbide lime as substrates to boost energy recuperation and dyestuff removal in constructed wetland-microbial fuel cell integrated with copper oxide/carbon cloth cathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23647-23663. [PMID: 38427169 DOI: 10.1007/s11356-024-32637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
Collapse
Affiliation(s)
- Guo-Yao Leow
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sze-Mun Lam
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Jin-Chung Sin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
7
|
Wang R, Wang S, Cao R, Han J, Huang T, Wen G. The apoptosis of Chlorella vulgaris and the release of intracellular organic matter under metalimnetic oxygen minimum conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168001. [PMID: 37875207 DOI: 10.1016/j.scitotenv.2023.168001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Metalimnetic oxygen minimum (MOM) is a frequent occurrence in lakes and reservoirs, and its formation is related to the blooming and apoptosis of algae. In this study, the apoptosis mechanism of Chlorella vulgaris (C. vulgaris) and the release of intracellular organic matter (IOM) under different MOM conditions were analyzed by changing the dissolved oxygen (DO) (7.0 mg/L, 3.0 mg/L, and 0.3 mg/L) and water pressure (0.3 MPa and normal pressure). The integrity and auto-fluorescence of algae cells decreased rapidly in the first 8 days, and then stabilized gradually during the development of MOM. Compared with that of water pressures, DO had a significant effect on the activity of algal cells, and higher initial DO levels (3.0 mg/L and 7.0 mg/L) accelerated the lysis of algal cells. The integrity of algae cells decreased to 28.8 %, 31.8 % and 56.6 % at the initial DO of 7 mg/L, 3 mg/L and 0.3 mg/L under 0.3 MPa, respectively. Meanwhile, the concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) continued to increase and reached their maximum at 8 or 12 days, respectively, due to the IOM release caused by algal cell rupture, and then gradually decreased due to microbial degradation. Consistent with the results of membrane integrity, the highest DOC and DON concentrations were found at higher initial DO conditions. By parallel factor analysis, the change in total organic matter fluorescence intensity was consistent with DOC, once again increasing in the first 8 days and then gradually decreasing. The increased humic-like component, which is related to higher aromaticity, led to the monotonic increase of HAAFPs and THMFPs. However, the released IOM of C. vulgaris had lower N-DBPFPs, with TCNMFP predominating primarily. In summary, these results shed new lights on exploring the apoptosis of algae and the release of IOM during the development of MOM.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuo Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingru Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
8
|
Tu X, Xu P, Zhu Y, Mi W, Bi Y. Molecular complexation properties of Cd 2+ by algal organic matter from Scenedesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115378. [PMID: 37598544 DOI: 10.1016/j.ecoenv.2023.115378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
A detailed understanding the metals binding with algal organic matter (AOM) is essential to gain a deeper insight into the toxicity and migration of metals in algae cell. However, the molecular complexation mechanism of the metals binding with AOM remains unclear. In this study, cadmium ion (Cd2+) binding properties of AOMs from Scenedesmus obliquus, which included extracellular organic matter (EOM) and intracellular organic matter (IOM), were screened. When Cd2+ < 0.5 mg/L, the accumulation of Cd2+ could reach 40%, while Cd2+ > 0.5 mg/L, the accumulation of Cd2+ was only about 10%. EOM decreased gradually (from 8.51 to 3.98 mg/L), while IOM increased gradually (from 9.62 to 21.00 mg/L). The spectral characteristics revealed that IOM was richer in peptides/proteins and had more hydrophilic than EOM. Both EOM and IOM contained three protein-like components (containing tryptophan and tyrosine) and one humic-like component, and their contents in IOM were higher than that in EOM. The tryptophan protein-like substances changed greatly during Cd2+ binding, and that the tryptophan protein-like substances complexed to Cd2+ before tyrosine protein-like substances in IOM was identified. Moreover, the functional groups of N-H, O-H, and CO in AOM played an important role, and the N-H group was priority to interacts with Cd2+ in the complexing process. More functional groups (such as C-O and C-N) were involved in the metals complexing in EOM than in IOM. It could be concluded that Cd2+ stress promoted the secretion of AOM in Scenedesmus obliquus, and proteins in AOM could complex Cd2+ and alleviate its toxicity to algal cell. These findings provided deep insights into the interaction mechanism of AOM with Cd2+ in aquatic environments.
Collapse
Affiliation(s)
- Xiaojie Tu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Zhao N, Cao R, Han J, Wang S, Xu H, Wang J, Huang T, Wen G. The change of amino acids samples under metalimnetic oxygen minimum condition: Characterization and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130591. [PMID: 37055995 DOI: 10.1016/j.jhazmat.2022.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
The metalimnetic oxygen minimum (MOM) is a common anaerobic phenomenon that occur between 5.00 and 40.00 m of reservoirs. Amino acids (AAs) are widely found in water, but their change in MOM remain unclear. In this study, four AAs with different side chain groups were selected to explore the change of their samples and related disinfection by-products formation potential (DBPFPs) under MOM condition. The results showed that the final degradation rate of dissolved organic carbon and dissolved organic nitrogen of four AAs samples were 11.71%-59.87% and 26.50%-100.00% under MOM condition. Aspartic acid samples were the easiest to be degraded, whereas glycine samples were the opposite. While the total fluorescence intensity increased by 6.30%-113.40% for the appearance of tryptophan-like substance. The total DBPFPs of glutamic acid, arginine and aspartic acid samples were finally decreased by 4.73%, 8.00% and 98.88% (glycine sample increased by 2.30 times). Compared with the surface condition, the degradation of AAs samples and the change of DBPFPs were significantly inhibited under MOM condition. In addition, the diversities of bacterial communities were significantly reduced under MOM condition, which was very unfavorable to the degradation of AAs samples, and in turn affected the control of DBPs and deteriorated the water quality.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingru Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuo Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
10
|
Du Y, Wang WL, Wang ZW, Yuan CJ, Ye MQ, Wu QY. Overlooked Cytotoxicity and Genotoxicity to Mammalian Cells Caused by the Oxidant Peroxymonosulfate during Wastewater Treatment Compared with the Sulfate Radical-Based Ultraviolet/Peroxymonosulfate Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3311-3322. [PMID: 36787277 DOI: 10.1021/acs.est.2c06965] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Byproduct formation (chlorate, bromate, organic halogen, etc.) during sulfate radical (SO4•-)-based processes like ultraviolet/peroxymonosulfate (UV/PMS) has aroused widespread concern. However, hypohalous acid (HOCl and HOBr) can form via two-electron transfer directly from PMS, thus leading to the formation of organic halogenated byproducts as well. This study found both PMS alone and UV/PMS can increase the toxicity to mammalian cells of wastewater, while the UV/H2O2 decreased the toxicity. Cytotoxicity of two wastewater samples increased from 5.6-8.3 to 15.7-29.9 mg-phenol/L, and genotoxicity increased from 2.8-3.1 to 5.8-12.8 μg 4-NQO/L after PMS treatment because of organic halogen formation. Organic halogen formation from bromide rather than chloride was found to dominate the toxicity increase. The SO4•--based process UV/PMS led to the formation of both organic halogen and inorganic bromate and chlorate. However, because of the very low concentration (<20 μg/L) and relatively low toxicity of bromate and chlorate, contributions of inorganic byproducts to toxicity increase were negligible. PMS would not form chlorate and bromate, but it generated a higher concentration of total organic halogen, thus leading to a more toxic treated wastewater than UV/PMS. UV/PMS formed less organic halogen and toxicity because of the destruction of byproducts by UV irradiation and the removal of byproduct precursors. Currently, many studies focused on the byproducts bromate and chlorate during SO4•--based oxidation processes. This work revealed that the oxidant PMS even needs more attention because it caused higher toxicity due to more organic halogen formation.
Collapse
Affiliation(s)
- Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Wei Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ming-Qi Ye
- Everbright Water (Shenzhen) Limited, Shenzhen 518000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
Fu X, Yu Z, Kong F, Duan P, Li F, Zhang L, Liu Z, Cui Y. Application of an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands: Mechanisms of pollutants removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 368:128337. [PMID: 36403915 DOI: 10.1016/j.biortech.2022.128337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study established an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands (VFCWs) to enhance pollutants removal efficiencies and reduce greenhouse gas emissions simultaneously. The results of the VFCWs experiment indicated that the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen in loach systems were significantly higher than those of non-loach systems, achieving 59.16%, 35.98%, and 40.96%, respectively. The CH4 and N2O emission fluxes were also significantly reduced in the integrated system, resulting in lower global warming potential (GWP) and GWP per unit of pollutants removal. Loaches promoted the transportation of oxygen, facilitated the re-contact and utilization of sediments, reduced CH4 emission, and enhanced nitrogen conversion and phosphorus accumulation. Increased bioavailable carbon and nitrate-nitrogen in the integrated system improved the abundance of denitrifying bacteria, which supported complete denitrification, reducing N2O emissions with high pollutant removal.
Collapse
Affiliation(s)
- Xiuzheng Fu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Pingping Duan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanyi Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lingzhu Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhongying Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|