1
|
Xu D, Xie Y, Jin X, Zheng J, Gao Q, Jin P, Zhu X, Zhang Z, Li X, Li G, Liang H, Van der Bruggen B. Polyphenol-mediated defect patching of graphene oxide membranes for sulfonamide contaminants removal and fouling control. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133890. [PMID: 38422736 DOI: 10.1016/j.jhazmat.2024.133890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Graphene oxide (GO)-based laminar membranes are promising candidates for next-generation nanofiltration membranes because of their theoretically frictionless nanochannels. However, nonuniform stacking during the filtration process and the inherent swelling of GO nanosheets generate horizontal and vertical defects, leading to a low selectivity and susceptibility to pore blockage. Herein, both types of defects are simultaneously patching by utilizing tannic acid and FeⅢ. Tannic acid first partially reduced the upper GO framework, and then coordinated with FeⅢ to form a metal-polyphenol network covering horizontal defects. Due to the enhanced steric hindrance, the resulting membrane exhibited a two-fold increase in sulfonamide contaminants exclusion compared to the pristine GO membrane. A non-significant reduction in permeance was observed. In terms of fouling control, shielding defects significantly alleviated the irreversible pore blockage of the membrane. Additionally, the hydrophilic metal-polyphenol network weakened the adhesion force between the membrane and foulants, thereby improving the reversibility of fouling in the cleaning stage. This work opens up a new way to develop GO-based membranes with enhanced separation performance and antifouling ability.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yumeng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Qieyuan Gao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zifeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
2
|
Chen S, Sheng X, Zhao Z, Cui F. Chemical-free vacuum ultraviolet irradiation as ultrafiltration membrane pretreatment technique: Performance, mechanisms and DBPs formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119785. [PMID: 38081086 DOI: 10.1016/j.jenvman.2023.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Membrane fouling induced by natural organic matter (NOM) has seriously affected the further extensive application of ultrafiltration (UF). Herein, a simple, green and robust vacuum ultraviolet (VUV) technology was adopted as pretreatment before UF and ultraviolet (UV) technology was used for comparison. The results showed that control effect of VUV pretreatment on membrane fouling was better than that of UV pretreatment, as evidenced by the increase of normalized flux from 0.27 to 0.38 and 0.73 after 30 min UV or VUV pretreatment, respectively. This is related to the fact that VUV pretreatment exhibited stronger NOM degradation ability than UV pretreatment owing to the formation of HO•. The steady-state concentration of HO• was calculated as 3.04 × 10-13 M and the cumulative exposure of HO• reached 5.52 × 10-10 M s after 30 min of VUV irradiation. And the second-order rate constant between NOM and HO• was determined as 1.36 × 104 L mg-1 s-1. Furthermore, fluorescence EEM could be applied to predict membrane fouling induced by humic-enriched water. Standard blocking and cake filtration were major fouling mechanisms. Moreover, extension of UV pretreatment time increased the disinfection by-products (DBPs) formation, the DBPs concentration was enhanced from 322.36 to 1187.80 μg/L after 210 min pretreatment. However, VUV pretreatment for 150 min reduced DBPs content to 282.57 μg/L, and DBPs content continued to decrease with the extension of pretreatment time, revealing that VUV pretreatment achieved effective control of DBPs. The variation trend of cytotoxicity and health risk of DBPs was similar to that of DBPs concentration. In summary, VUV pretreatment exhibited excellent effect on membrane fouling alleviation, NOM degradation and DBPs control under a certain pretreatment time.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xin Sheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
3
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Zhao C, Liu B, Zhu T, Zhu X, Cheng X. Mechanistic insight into single-atom Fe loaded catalytic membrane with peracetic acid and visible light activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132506. [PMID: 37696210 DOI: 10.1016/j.jhazmat.2023.132506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Advanced oxidation is an effective method for removing hard-to-degrade organic pollutants from water. In this paper, a novel structure of a single atom Fe anchored g-C3N4 (FeCN) membrane was proposed to remove pollutants from water by coupling membrane technology with photocatalytic and peroxyacetic acid oxidation. The presence of zero-dimensional Fe atoms in FeCN membranes allows for the removal of acetaminophen (APAP) in mobile membrane filtration systems without compromising permeation performance by simultaneously possessing visible photocatalytic capability and peroxyacetic acid (PAA) activation. Existence of inter-membrane domain-limiting conditions led to 100 % degradation of APAP within 10.5 ms, which is 5 orders of magnitude faster than conventional catalytic systems. Notably, photo-generated electrons/holes generated by light and HClO generated by Cl- promote the conversion of Fe(V) and the removal of pollutants during the catalytic process. The spatial separation ability of the membrane catalytic layer surface mitigates the catalyst's passivation by macromolecular organics. Furthermore, surface photocatalysis of the membrane and interlayer catalysis generated by PAA mitigate the surface and interlayer pollutants of the membrane, respectively. This study explores a novel approach for the development of highly efficient atom-catalyzed membrane systems with multiple purposes.
Collapse
Affiliation(s)
- Changrong Zhao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| |
Collapse
|
5
|
Review of Artificial Nacre for Oil–Water Separation. SEPARATIONS 2023. [DOI: 10.3390/separations10030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Due to their extraordinary prospective uses, particularly in the areas of oil–water separation, underwater superoleophobic materials have gained increasing attention. Thus, artificial nacre has become an attractive candidate for oil–water separation due to its superhydrophilicity and underwater superoleophobicity properties. Synthesized artificial nacre has successfully achieved a high mechanical strength that is close to or even surpasses the mechanical strength of natural nacre. This can be attributed to suitable synthesis methods, the selection of inorganic fillers and polymer matrices, and the enhancement of the mechanical properties through cross-linking, covalent group modification, or mineralization. The utilization of nacre-inspired composite membranes for emerging applications, i.e., is oily wastewater treatment, is highlighted in this review. The membranes show that full separation of oil and water can be achieved, which enables their applications in seawater environments. The self-cleaning mechanism’s basic functioning and antifouling tips are also concluded in this review.
Collapse
|
6
|
Li B, Shen L, Zhao Y, Yu W, Lin H, Chen C, Li Y, Zeng Q. Quantification of interfacial interaction related with adhesive membrane fouling by genetic algorithm back propagation (GABP) neural network. J Colloid Interface Sci 2023; 640:110-120. [PMID: 36842417 DOI: 10.1016/j.jcis.2023.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Since adhesive membrane fouling is critically determined by the interfacial interaction between a foulant and a rough membrane surface, efficient quantification of the interfacial interaction is critically important for adhesive membrane fouling mitigation. As a current available method, the advanced extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory involves complicated rigorous thermodynamic equations and massive amounts of computation, restricting its application. To solve this problem, artificial intelligence (AI) visualization technology was used to analyze the existing literature, and the genetic algorithm back propagation (GABP) artificial neural network (ANN) was employed to simplify thermodynamic calculation. The results showed that GABP ANN with 5 neurons could obtain reliable prediction performance in seconds, versus several hours or even days time-consuming by the advanced XDLVO theory. Moreover, the regression coefficient (R) of GABP reached 0.9999, and the error between the prediction results and the simulation results was less than 0.01%, indicating feasibility of the GABP ANN technique for quantification of interfacial interaction related with adhesive membrane fouling. This work provided a novel strategy to efficiently optimize the thermodynamic prediction of adhesive membrane fouling, beneficial for better understanding and control of adhesive membrane fouling.
Collapse
Affiliation(s)
- Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yingbo Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|