1
|
Deng L, Zakaria BS, Zhang J, Dhar BR. Utilizing waste eggshells as a calcium precursor for contact precipitation of phosphorus from digested sludge centrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170906. [PMID: 38350578 DOI: 10.1016/j.scitotenv.2024.170906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Phosphorus (P) recovery from wastewater is an essential component of the global P cycle. A contact precipitation process using chicken eggshells as a calcium (Ca) precursor was used to recover P from synthetic wastewater and real digested sludge centrate. Up to 96.4 % of P could be recovered from the digested sludge centrate after three repeated cycles of the contact precipitation process. In addition, 36.1 % of total chemical oxygen demand and 37.6 % of total ammonia nitrogen were removed from the centrate. Finally, most of the precipitates could be collected by a simple washing step. Scanning electron microscopy-energy dispersive spectroscopy and x-ray diffraction results indicated that the eggshells played three roles in this process: Ca source, precipitation substrate, and filter medium. Precipitates were mainly brushite. This research provides a new perspective on P recovery from wastewater using waste eggshells, and if further optimized, has a potential for practical future applications.
Collapse
Affiliation(s)
- Linyu Deng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley 94720, CA, United States
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
2
|
Wang R, Zhan Z, Song B, Saakes M, van der Weijden RD, Buisman CJN, Lei Y. Electrochemical route outperforms chemical struvite precipitation in mitigating heavy metal contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133418. [PMID: 38183941 DOI: 10.1016/j.jhazmat.2023.133418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Electrochemically mediated struvite precipitation (EMSP) offers a robust, chemical-free process towards phosphate and ammonium reclamation from nutrients-rich wastewater, i.e., swine wastewater. However, given the coexistence of heavy metal, struvite recovered from wastewater may suffer from heavy metal contamination. Here, we systematically investigated the fate of Cu2+, as a representative heavy metal, in the EMSP process and compared it with the chemical struvite precipitation (CSP) system. The results showed that Cu2+ was 100% transferred from solution to solid phase as a mixture of copper and struvite under pHi 9.5 with 2-20 mg/L Cu2+ in the CSP system, and varying pH would affect struvite production. In the EMSP system, the formation of struvite was not affected by bulk pH, and struvite was much less polluted by co-removed Cu2+ (24.4%) at pHi 7.5, which means we recovered a cleaner and safer product. Specifically, struvite mainly accumulates on the front side of the cathode. In contrast, the fascinating thing is that Cu2+ is ultimately deposited primarily to the back side of the cathode in the form of copper (hydro)oxides due to the distinct thickness of the local high pH layer on the two sides of the cathode. In turn, struvite and Cu (hydro)oxides can be harvested separately from the front and back sides of the cathode, respectively, facilitating the subsequent recycling of heavy metals and struvite. The contrasting fate of Cu2+ in the two systems highlights the merits of EMSP over conventional CSP in mitigating heavy metal pollution on recovered products, promoting the development of EMSP technology towards a cleaner recovery of struvite from waste streams.
Collapse
Affiliation(s)
- Runhua Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingnan Song
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Michel Saakes
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, the Netherlands
| | - Renata D van der Weijden
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, the Netherlands; Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, the Netherlands; Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Takabe Y, Ida K. Simultaneous phosphorus precipitation and sludge thickening by electrolysis with an anode covered by bivalve shells. WATER RESEARCH 2023; 247:120789. [PMID: 37922639 DOI: 10.1016/j.watres.2023.120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
A wastewater treatment plant with a large inflow of phosphorus (P) is a potential P source that can act as an alternative to phosphate rocks and a renewable source of P. During electrolysis with inert electrodes, hydroxide ions generated from the cathode cause calcium phosphate (CaP) precipitation, and oxygen and hydrogen generated from the electrodes cause thickening of the sludge by electroflotation in sludge treatment streams. However, these two effects have not been achieved simultaneously because the precipitation of CaP requires much more time than that required for thickening by electroflotation. In this study, an electrolysis system that used an anode covered with bivalve shells was used. Batch experiments were conducted and the results demonstrated that covering the anode with shells resulted in their dissolution and that the calcium ions provided by this process considerably enhanced P removal in the form of CaP, thereby shortening the time required for CaP precipitation. In continuous experiments with excess sludge, electrolysis with shells accomplished sludge thickening by electroflotation (the thickened sludge had 5.5 times the total solids in the original excess sludge) and low relative phosphate-P concentrations (0.0545-0.0812) in the effluent compared to the influent. This effect is attributed to CaP precipitation. Additional mixing of the CaP precipitates in the effluent enhanced their settleability. The results demonstrate that electrolysis using an anode covered with bivalve shells simultaneously achieved CaP precipitation and sludge thickening.
Collapse
Affiliation(s)
- Yugo Takabe
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan.
| | - Kotaro Ida
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan
| |
Collapse
|
4
|
Dong S, Li X, Wang S, Zhang D, Chen Y, Xiao F, Wang Y. Adsorption-electrochemical mediated precipitation for phosphorus recovery from sludge filter wastewater with a lanthanum-modified cellulose sponge filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165545. [PMID: 37454846 DOI: 10.1016/j.scitotenv.2023.165545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, the sludge filter wastewater is confirmed to investigate the effects of adsorption-electrochemical mediated precipitation (EMP) driven phosphorus recovery on the basis of lanthanum-modified cellulose sponge filter (LCLM) material. The adsorption-EMP method relies on in situ recovery phosphate (P) from the used desorption agent (NaOH-NaCl binary solution) via the formation of Ca5(PO4)3OH all while preserving the alkalinity of the desorption agents which benefited long-term application. The lanthanum content of LCLM was 9.0 mg/g, and the adsorption capacity reached 226.1 ± 15.2 mg P/g La at an equilibrium concentration of 3.9 mg P/L. After adsorption, 55.7 % of P was recovered, and the corresponding alkalinity increased from 1.9 mmol/L to 2.2 mmol/L. Adsorption mechanism analysis revealed that the high lanthanum usage of LCLM was attributed to the synergistic effect of the lattice oxygen of LaO and LaPO4·0.5H2O crystallite formation. Additionally, the Ca5(PO4)3OH was found precipitated in the precipitation in the cathode chamber (P-CC) rather than on the surface/section of cation exchange membrane (CEM) and cathode indicating that the P recovery process was controlled by the saturation of CaP species in the EMP system and the electromigration effect. These findings present a new strategy to promote the effective utilization of rare earth elements for P adsorption and demonstrate the potential application of adsorption-EMP systems in dephosphorization for wastewater treatment.
Collapse
Affiliation(s)
- Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Daxin Zhang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yuchi Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|