1
|
Tang B, Wang J, Gao X, Li Z. Strategies for efficient enrichment of anaerobic ammonia oxidizing bacteria in activated sludge. J Environ Sci (China) 2025; 151:703-713. [PMID: 39481975 DOI: 10.1016/j.jes.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 11/03/2024]
Abstract
Anaerobic ammonia oxidation (Anammox) is an economical and sustainable wastewater nitrogen removal technology, and its application in the mainstream process is the inevitable trend of the development of Anammox. However, how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications. In this study, the rapid and efficient enrichment of Anammox bacteria was achieved by raising the reflux ratio and nitrogen loading rate (NLR) using conventional activated sludge as the inoculant. In the screening phase (days 1-90), the reflux ratio was increased to discharge partial floc sludge, resulting in the relative abundance of Candidatus Brocadiaceae increased from 0.04% to 22.54%, which effectively reduced the matrix and spatial competition between other microorganisms and Anammox bacteria. On day 90, the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26, indicating that the Anammox reaction was the primary nitrogen removal process in the system. In the enrichment phase (days 91-238), the NLR increased from 0.43 to 1.20 kgN/(m3·d) and removal efficiency was 71.89%, resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27% on day 180. The reactor operated steadily from days 444 to 498, maintaining the nitrogen removal rate (NRR) of 3.00 kgN/(m3·d) and achieving successful sludge granulation with the particle size of 392.4 µm. In short, this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge, supporting to start an Anammox process efficiently.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Wang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xingdong Gao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Bao HX, Li ZY, Chen C, Li M, Zhang XN, Song K, Sun YL, Wang AJ. Unraveling the impact of perfluorooctanoic acid on sulfur-based autotrophic denitrification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135617. [PMID: 39213772 DOI: 10.1016/j.jhazmat.2024.135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PFOA has garnered heightened scrutiny for its impact on denitrification, especially given its frequent detection in secondary effluent discharged from wastewater treatment plants. However, it is still unclear what potential risk PFOA release poses to a typical advanced treatment process, especially the sulfur-based autotrophic denitrification (SAD) process. In this study, different PFOA concentration were tested to explore their impact on denitrification kinetics and microbial dynamic responses of the SAD process. The results showed that an increase PFOA concentration from 0 to 1000 μg/L resulted in a decrease in nitrate removal rate from 9.52 to 7.73 mg-N/L·h. At the same time, it increased nitrite accumulation and N2O emission by 6.11 and 2.03 times, respectively. The inhibitory effect of PFOA on nitrate and nitrite reductase activity in the SAD process was linked to the observed fluctuations in nitrate and nitrite levels. It is noteworthy that nitrite reductase was more vulnerable to the influence of PFOA than nitrate reductase. Furthermore, PFOA showed a significant impact on gene expression and microbial community. Metabolic function prediction revealed a notable decrease in nitrogen metabolism and an increase in sulfur metabolism under PFOA exposure. This study highlights that PFOA has a considerable inhibitory effect on SAD performance.
Collapse
Affiliation(s)
- Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Zhou-Yang Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Min Li
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang B, Zhang N, Sui H, Xue R, Qiao S. Unique ecology of biofilms and flocs: Bacterial composition, assembly, interaction, and nitrogen metabolism within deteriorated bioreactor inoculated with mature partial nitrification-anammox sludge. BIORESOURCE TECHNOLOGY 2024; 414:131643. [PMID: 39414169 DOI: 10.1016/j.biortech.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This work unraveled discrepant ecological patterns between biofilms and flocs in a deteriorated bioreactor inoculated with mature partial nitrification-anammox (PN/A) sludge. Based on 16S rRNA analysis, a comprehensive evaluation of neutral and null models, along with niche width, delineated that the bacterial community assembly in biofilms and flocs was dominantly driven by the stochastic process, and dispersal limitation critically shaped the community assembly. Co-occurrence network analysis revealed that environmental stress caused decentralized and fragmented bacterial colonies, and anammox bacteria were mainly peripheral in biofilms network and less involved in interspecific interactions. Simultaneous PN/A and partial denitrification-anammox (PD/A) processes were identified, whereas PN and PD process primarily occurred in the biofilms and flocs, respectively, as evidenced by metagenomics. Collectively, these outcomes are expected to deepen the basic understanding of complex microbial community and nitrogen metabolism under environmental disturbance, thereby better characterizing and serving the artificial ecosystems.
Collapse
Affiliation(s)
- Baoyong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Nianbo Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiying Sui
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rong Xue
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Han Z, Hu R, Zheng X, Zhao Z, Li W, He H, Lin T, Xu H. Feasibility of simultaneous optimization of Anammox start-up and nitrogen removal performance by intermittent dosing of nanoscale zero-valent iron. BIORESOURCE TECHNOLOGY 2024; 408:131140. [PMID: 39069140 DOI: 10.1016/j.biortech.2024.131140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The long acclimation period and sensitivity to environmental conditions of Anammox are the bottlenecks for its promotion and application. An innovative strategy was adopted to accelerate functional microbial enhancement and improve nitrogen removal performance by inoculating cryopreserved Anammox sludge and activated sludge with intermittent dosing of nanoscale zero-valent iron (nZVI). The acclimation time was shortened by 76 days with nitrogen removal efficiency (NRE) reaching up to 91.07 %. Anammox, NDFO (nitrate/nitrite-dependent Fe(II) oxidation), Feammox (Fe(III) reduction coupled with anaerobic ammonium oxidation) and abiotic reactions were coupled in the system with nZVI, contributing to 69.79 %, 15.14 %, 9.84 % and 0.25 % of nitrogen removal, respectively. Further microbial analysis demonstrated significant enrichment of functional microorganisms, such as Candidatus Jettenia, Acidovorax and Comamonas. High-efficient nitrogen removal was attribute to the increase of functional genes involved in Anammox, electronic transfer, heme C synthesis and iron metabolism. This work provides an inspiring idea for the mainstream Anammox application.
Collapse
Affiliation(s)
- Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ruijie Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenfei Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haidong He
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
5
|
Li WJ, Li HZ, Xu J, Gillings MR, Zhu YG. Sewage Sludge Promotes the Accumulation of Antibiotic Resistance Genes in Tomato Xylem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10796-10805. [PMID: 38853591 DOI: 10.1021/acs.est.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Xylem serves as a conduit linking soil to the aboveground plant parts and facilitating the upward movement of microbes into leaves and fruits. Despite this potential, the composition of the xylem microbiome and its associated risks, including antibiotic resistance, are understudied. Here, we cultivated tomatoes and analyzed their xylem sap to assess the microbiome and antibiotic resistance profiles following treatment with sewage sludge. Our findings show that xylem microbes primarily originate from soil, albeit with reduced diversity in comparison to those of their soil microbiomes. Using single-cell Raman spectroscopy coupled with D2O labeling, we detected significantly higher metabolic activity in xylem microbes than in rhizosphere soil, with 87% of xylem microbes active compared to just 36% in the soil. Additionally, xylem was pinpointed as a reservoir for antibiotic resistance genes (ARGs), with their abundance being 2.4-6.9 times higher than in rhizosphere soil. Sludge addition dramatically increased the abundance of ARGs in xylem and also increased their mobility and host pathogenicity. Xylem represents a distinct ecological niche for microbes and is a significant reservoir for ARGs. These results could be used to manage the resistome in crops and improve food safety.
Collapse
Affiliation(s)
- Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiayang Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Wang L, Zhao Q, Zhang L, Wu D, Zhou J, Peng Y. S 0-driven partial denitrification coupled with anammox (S 0PDA) enables highly efficient autotrophic nitrogen removal from wastewater. WATER RESEARCH 2024; 255:121418. [PMID: 38492314 DOI: 10.1016/j.watres.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
This study proposed a novel strategy that integrates S0 particles (diameter: 2-3 mm) and granular sludge to establish S0-driven partial denitrification coupled with anammox (S0PDA) process for autotrophic nitrogen removal from NH4+- and NO3--containing wastewaters. This process was evaluated using an up-flow anoxic sludge bed bioreactor, operating continuously for 240 days. The influent concentrations of NH4+ and NO3- were 29.9 ± 2.7 and 50.2 ± 2.7 mg-N/L, respectively. Throughout the operation, the hydraulic retention time was shortened from 4.0 h to 2.0 h, while the effluent concentrations of NH4+ and NO3- were maintained at a desirable level of 1.45-1.51 mg-N/L and 4.46-6.52 mg-N/L, respectively. Despite an autotrophic process, the nitrogen removal efficiency and rate reached up to 88.5 ± 2.0 % and 1.75 ± 0.07 kg-N/(m3·d), respectively, indicating the remarkable robustness of the S0PDA process. Autotrophic anammox and sulfur-oxidizing bacteria (Candidatus Brocadia and Thiobacillus) were the predominant bacterial genera involved in the S0PDA process. Candidatus Brocadia was primarily enriched in the granular sludge, with a relative abundance of 6.70 %. Thiobacillus occupied a unique niche on the S0 particles, with a relative abundance as high as 57.6 %, of which Thiobacillus thioparus with partial denitrification function (reducing NO3- to NO2- without further reduction to N2) accounted for 78.0 %. These findings challenge the stereotype of low efficiency in autotrophic nitrogen removal from wastewater, shedding fresh light on the applications of autotrophic processes.
Collapse
Affiliation(s)
- Luyao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Di Wu
- Qingdao SPRING Water Treatment Co.Ltd., Qingdao 266510, PR China
| | - Jiazhong Zhou
- Qingdao SPRING Water Treatment Co.Ltd., Qingdao 266510, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
7
|
Zhang Z, Li D, Zhou C, Huang X, Chen Y, Wang S, Liu G. Enhanced nitrogen removal via partial nitrification/denitrification coupled Anammox using three stage anoxic/oxic biofilm process with intermittent aeration. WATER RESEARCH 2024; 255:121491. [PMID: 38520779 DOI: 10.1016/j.watres.2024.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.
Collapse
Affiliation(s)
- Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Changhui Zhou
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Xiaoshan Huang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yantong Chen
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shijie Wang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
8
|
Wu H, Zeng W, Wu L, Lu S, Peng Y. Mechanisms of endogenous and exogenous partial denitrification in response to different carbon/nitrogen ratios: Transcript levels, nitrous oxide production, electron transport. BIORESOURCE TECHNOLOGY 2024; 399:130558. [PMID: 38460557 DOI: 10.1016/j.biortech.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Nitrite as an important substrate for Anammox can be provided by partial denitrification (PD). In this study, endogenous partial denitrification (EdPD) and exogenous partial denitrification (ExPD) sludge were domesticated and their nitrite transformation rate reached 74.4% and 83.4%, respectively. The impact of four carbon/nitrogen (C/N) ratios (1.5, 3.0, 5.0 and 6.0) on nitrous oxide (N2O) emission and denitrification functional genes expression in both PD systems were investigated. Results showed that elevated C/N ratios enhanced most denitrification genes expression, but in EdPD, high nitrite levels suppressed nosZ genes expression (from 9.4% to 1.4%), leading to increased N2O emission (0 to 3.4%). EdPD also exhibited lower electron transfer system activity, resulting in slower nitrogen oxide conversion efficiency and more stable nitrite accumulation compared to ExPD. These findings offer insights for optimizing PD systems under varying water quality conditions.
Collapse
Affiliation(s)
- Hongan Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Sijia Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Yang S, Peng Y, Hou F, Pang H, Jiang L, Sun S, Li J, Zhang L. Rapid establishment of municipal sewage partial denitrification-anammox for nitrogen removal through inoculation with side-stream anammox biofilm without domestication. BIORESOURCE TECHNOLOGY 2024; 400:130679. [PMID: 38588781 DOI: 10.1016/j.biortech.2024.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by ∼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Feng Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Hongtao Pang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Leyong Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
He S, Zhao L, Feng L, Zhao W, Liu Y, Hu T, Li J, Zhao Q, Wei L, You S. Mechanistic insight into the aggregation ability of anammox microorganisms: Roles of polarity, composition and molecular structure of extracellular polymeric substances. WATER RESEARCH 2024; 254:121438. [PMID: 38467096 DOI: 10.1016/j.watres.2024.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
The chemical characteristics of extracellular polymeric substances (EPS) of anammox bacteria (AnAOB) play a crucial role in the rapid enrichment of AnAOB and the stable operation of wastewater anammox processes. To clarify the influential mechanisms of sludge EPS on AnAOB aggregation, multiple parameters, including the polarity distribution, composition, and molecular structure of EPS, were selected, and their quantitative relationship with AnAOB aggregation was analyzed. Compared to typical anaerobic sludge (anaerobic floc and granular sludge), the anammox sludge EPS exhibited higher levels of tryptophan-like substances (44.82-56.52 % vs. 2.57-39.81 %), polysaccharides (40.02-53.49 mg/g VSS vs. 30.22-41.69 mg/g VSS), and protein structural units including α-helices (20.70-23.98 % vs. 16.48-19.32 %), β-sheets (37.43-42.98 % vs. 25.78-36.72 %), and protonated nitrogen (Npr) (0.065-0.122 vs. 0.017-0.061). In contrast, it had lower contents of β-turns (20.95-27.39 % vs. 28.17-39.04 %). These biopolymers were found to originate from different genera of AnAOB. Specifically, the α-helix-rich proteins were mainly derived from Candidatus Kuenenia, whereas the extracellular proteins related to tryptophan and Npr were closely associated with Candidatus Brocadia. Critically, these EPS components could drive anammox aggregation through interactions. Substantial amounts of tryptophan-like substances facilitated the formation of β-sheet structures and the exposure of internal hydrophobic clusters, which benefited the anammox aggregation. Meanwhile, extracellular proteins with high Npr content played a pivotal role in the formation of mixed protein-polysaccharide gel networks with the electronegative regions of polysaccharides, which could be regarded as the key component in the maintenance of anammox sludge stability. These findings provide a comprehensive understanding of the multifaceted roles of EPS in driving anammox aggregation and offer valuable insights into the development of EPS regulation strategies aimed at optimizing the anammox process.
Collapse
Affiliation(s)
- Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Zhao Q, Li X, Zhang L, Li J, Jia T, Zhao Y, Wang L, Peng Y. Partial denitrifying phosphorus removal coupling with anammox (PDPRA) enables synergistic removal of C, N, and P nutrients from municipal wastewater: A year-round pilot-scale evaluation. WATER RESEARCH 2024; 253:121321. [PMID: 38367384 DOI: 10.1016/j.watres.2024.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Applying anaerobic ammonium oxidation (anammox) in municipal wastewater treatment plants (MWWTPs) can unlock significant energy and resource savings. However, its practical implementation encounters significant challenges, particularly due to its limited compatibility with carbon and phosphorus removal processes. This study established a pilot-scale plant featuring a modified anaerobic-anoxic-oxic (A2O) process and operated continuously for 385 days, treating municipal wastewater of 50 m3/d. For the first time, we propose a novel concept of partial denitrifying phosphorus removal coupling with anammox (PDPRA), leveraging denitrifying phosphorus-accumulating organisms (DPAOs) as NO2- suppliers for anammox. 15N stable isotope tracing revealed that the PDPRA enabled an anammox reaction rate of 6.14 ± 0.18 μmol-N/(L·h), contributing 57.4 % to total inorganic nitrogen (TIN) removal. Metagenomic sequencing and 16S rRNA amplicon sequencing unveiled the co-existence and co-prosperity of anammox bacteria and DPAOs, with Candidatus Brocadia being highly enriched in the anoxic biofilms at a relative abundance of 2.46 ± 0.52 %. Finally, the PDPRA facilitated the synergistic conversion and removal of carbon, nitrogen, and phosphorus nutrients, achieving remarkable removal efficiencies of chemical oxygen demand (COD, 83.5 ± 5.3 %), NH4+ (99.8 ± 0.7 %), TIN (77.1 ± 3.6 %), and PO43- (99.3 ± 1.6 %), even under challenging operational conditions such as low temperature of 11.7 °C. The PDPRA offers a promising solution for reconciling the mainstream anammox and the carbon and phosphorus removal, shedding fresh light on the paradigm shift of MWWTPs in the near future.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Luyao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
12
|
Wang R, Liu J, Zhang Q, Li X, Wang S, Peng Y. Robustness of the anammox process at low temperatures and low dissolved oxygen for low C/N municipal wastewater treatment. WATER RESEARCH 2024; 252:121209. [PMID: 38309058 DOI: 10.1016/j.watres.2024.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Low water temperatures and ammonium concentrations pose challenges for anammox applications in the treatment of low C/N municipal wastewater. In this study, a 10 L-water bath sequencing batch reactor combing biofilm and suspended sludge was designed for low C/N municipal wastewater treatment. The nitrogen removal performance via partial nitrification anammox-(endogenous) denitrification anammox process was investigated with anaerobic-aerobic-anoxic mode at low temperatures and dissolved oxygen (DO). The results showed that with the decrease of temperature from 30 to 15℃, the influent and effluent nitrogen concentrations and nitrogen removal efficiencies were 73.7 ± 6.5 mg/L, 7.8 ± 2.8 mg/L, and 89.4 %, respectively, with aerobic hydraulic retention time of only 6 h and DO concentration of 0.2-0.5 mg/L. Among that, the stable anammox process compensated for the inhibitory effects of the low temperatures on the nitrification and denitrification processes. Notably, from 30 to 15℃, the anammox activity and relative abundance of the dominant Brocadia genus were increased from 39.7 to 45.5 mgN/gVSS/d and 7.3 to 12.0 %, respectively; the single gene expression level of the biofilm increased 9.0 times. The anammox bacteria showed a good adaptation to temperatures reduction. However, nitrogen removal by anammox was not improved by increasing DO (≥ 4 mg/L) at 8-4℃. Overall, the results of this study demonstrate the feasibility of the mainstream anammox process at low temperatures.
Collapse
Affiliation(s)
- Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
13
|
Tian G, Kong Z, Zhang Y, Qiu L, Wang H, Yan Q. Simultaneous ammonia and nitrate removal by novel integrated partial denitrification-anaerobic ammonium oxidation-bioelectrochemical system. BIORESOURCE TECHNOLOGY 2024; 396:130428. [PMID: 38341044 DOI: 10.1016/j.biortech.2024.130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The current study explored the performance of an integrated partial denitrification-anaerobic ammonium oxidation (anammox)-bioelectrochemical system on simultaneous removal of ammonia nitrogen and nitrate nitrogen. Different operational conditions were selected to optimize critical parameters of the process for improving nitrogen removal. The results indicated that more than 90 % of total inorganic nitrogen removal efficiency was achieved under the optimal conditions: ammonia nitrogen/nitrate nitrogen ratio of 1:2, external resistance of 200 Ω and inoculation volume ratio of anammox bacteria/denitrifying at 2:1. Improved nitrogen removal under the optimal conditions were confirmed by microbial community changes (Candidatus Brocadia and Thiobacillus) and enhanced of nitrogen metabolism-related genes (hao, hzsA/C and hdh). Increases of Limnobacter indicated an enhanced electron transfer efficiency. Overall, high-efficiency and stable nitrogen removal efficiency without nitrite nitrogen accumulation could be achieved by the integrated system under the optimal conditions, providing novel insights for simultaneous treatment of domestic wastewater and groundwater.
Collapse
Affiliation(s)
- Gengxu Tian
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Liwei Qiu
- Changzhou Cheff Environmental Protection Technology Co., Ltd, Changzhou 213164, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China.
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China
| |
Collapse
|
14
|
Si G, Yang J, Zhang L, Gao J, Zhang S, Ni S, Peng Y. NH 2-MIL-101(Fe)-mediated photo-Fenton reaction enhanced simultaneous removal of nitrogen and refractory organics in anammox process through interfacial electron transfer. BIORESOURCE TECHNOLOGY 2024; 395:130390. [PMID: 38301944 DOI: 10.1016/j.biortech.2024.130390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.
Collapse
Affiliation(s)
- Guangchao Si
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan.
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China.
| | - Shouqing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
15
|
Xiong L, Li X, Li J, Zhang Q, Zhang L, Wu Y, Peng Y. Efficient nitrogen removal from real municipal wastewater and mature landfill leachate using partial nitrification-simultaneous anammox and partial denitrification process. WATER RESEARCH 2024; 251:121088. [PMID: 38198976 DOI: 10.1016/j.watres.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Anaerobic ammonia oxidation (anammox) of municipal wastewater is a research focus, especially the combined treatment with mature landfill leachate is a current research hotspot. In this study, municipal wastewater was treated by partial nitrification via sequencing batch reactor (SBR), and its effluent and mature landfill leachate were then mixed into an up-flow anaerobic sludge blanket (UASB) for simultaneous anammox and partial denitrification reaction. Through partial nitrification, a high nitrite accumulation rate (93.0 ± 3.8 %) was achieved by low dissolved oxygen (0.5-1.6 mg/L) and controlled aerobic time (3.5 h) in SBR. The UASB system was responsible for 78.8 ± 2.1 % nitrogen removal of the entire system with a hydraulic reaction time (HRT) of 3.8 h, accompanied by the anammox contribution up to 89.4 ± 6.0 %. The overall partial nitrification-simultaneous anammox and partial denitrification (PN-SAPD) system was controlled at a total COD/TIN of 2.8 ± 0.3 and a total HRT of only 10.2 h, achieving the nitrogen removal efficiency and effluent TIN were 95.2 ± 2.2 % and 3.4 ± 1.5 mg/L, respectively. The qPCR results showed functional genes (hzsA(B), hdh) associated with anaerobic ammonia-oxidizing bacteria (AnAOB), whose high gene copy abundance and transcription expression ensured the removal of major nitrogen from municipal wastewater and mature landfill leachate. 16S amplicon sequencing showed that the Ca. Brocadia (9.72-12.6 %) was further enrichment after sodium acetate was added, and the transcription expression of Thauera (0.5-7.0 %) caused nitrate to nitrite. The high abundance of related enzymes (hao, hzs, hdh, narGHI) involved in anammox and partial denitrification processes were found in the macrogenomic sequencing, and only Ca. Brocadia was involved in multi-pathway nitrogen metabolism in AnAOB. Based on the efficient nitrogen removal by AnAOB and denitrifying bacteria, this modified PN-SAPD process provides a new option for the co-treatment of mature landfill leachate in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Lulu Xiong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
16
|
Zhang C, Zhang L, Liu J, Li X, Zhang Q, Peng Y. Achieving ultra-high nitrogen and phosphorus removal from real municipal wastewater in a novel continuous-flow anaerobic/aerobic/anoxic process via partial nitrification, endogenous denitrification and nitrite-type denitrifying phosphorus removal. WATER RESEARCH 2024; 250:121046. [PMID: 38159538 DOI: 10.1016/j.watres.2023.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Achieving economic and efficient removal of nutrients in mainstream wastewater treatment plants (WWTPs) continues to be a challenging research topic. In this study, a continuous-flow anaerobic/aerobic/anoxic system with sludge double recirculation (AOA-SDR), which integrated partial nitrification (PN), endogenous denitrification (ED) and nitrite-type denitrifying phosphorus removal (nDNPR), was constructed to treat real carbon-limited municipal wastewater. The average effluent concentrations of total inorganic nitrogen (TIN) and PO43--P during the stable operation period were 1.8 and 0.3 mg/L, respectively. PN was achieved with an average nitrite accumulation ratio of 90.4 % by combined strategies. Adequate storage of polyhydroxyalkanoates and glycogen in the anaerobic zone promoted the subsequent nitrogen removal capacity. In the anoxic zone, nitrite served as the main electron acceptor for the denitrifying phosphorus removal process. Mass balance analysis revealed that nDNPR contributed to 23.6 % of TIN removal and 44.7 % of PO43--P removal. The enrichment of Nitrosomonas (0.45 %) and Ellin 6067 (1.31 %), along with the washout of Nitrospira (0.15 %) provided the bacterial basis for the successful implementation of PN. Other dominant endogenous heterotrophic bacteria, such as Dechlormonas (10.81 %) and Candidatus Accumulibacter (2.96 %), ensured simultaneous nitrogen and phosphorus removal performance. The successful validation of integrating PN, ED and nDNPR for advanced nutrient removal in the AOA-SDR process provides a transformative technology for WWTPs.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
17
|
Gong Q, Zeng W, Ma B, Hao X, Zhan M, Peng Y. Ultra-stable mixotrophic denitrification coupled with anammox under organic stress for mainstream municipal wastewater treatment. WATER RESEARCH 2024; 249:120932. [PMID: 38043349 DOI: 10.1016/j.watres.2023.120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Sulfur-based autotrophic denitrification (SAD) coupled with anammox is a promising process for autotrophic nitrogen removal in view of the stable nitrite accumulation during SAD. In this study, a mixotrophic nitrogen removal system integrating SAD, anammox and heterotrophic denitrification was established in a single-stage reactor. The long-term nitrogen removal performance was investigated under the intervention of organic carbon sources in real municipal wastewater. With the shortening of hydraulic retention time, the nitrogen removal rate of the mixotrophic system dominated by the autotrophic subsystem reached 0.46 Kg N/m³/d at an organic loading rate of 0.57 Kg COD/m³/d, with COD and total nitrogen removal efficiencies of 82.5 % and 94 %, respectively, realizing an ideal combination of autotrophic and heterotrophic systems. The 15NO3--N isotope labeling experiments indicated that thiosulfate-driven autotrophic denitrification was the main pathway for nitrite supply accounting for 80.6 %, while anammox exhibited strong competitiveness for nitrite under the dual electron supply of sulfur and organic carbon sources and contributed to 65.1 % of nitrogen removal. Sludge granulation created differential functional distributions in different forms of sludge, with SAD showing faster reaction rate as well as higher nitrite accumulation rate in floc sludge, while anammox was more active in granular sludge. Real-time quantitative PCR, RT-PCR and high-throughput sequencing results revealed a dynamically changing community composition at the gene and transcription levels. The decrease in heterotrophic denitrification bacteria abundance indicated the effectiveness of the operational strategy for introduction of thiosulfate and maintaining the dominance of SAD in denitrification process in suppressing the excessive growth of heterotrophic bacteria in the mixotrophic system. The high transcriptional expression of sulfur-oxidizing bacteria (SOB) (Thiobacillus and Sulfurimonas) and anammox bacteria (Candaditus_Brocadia and Candidatus_Kuenenia) played a crucial role in the stable nitrogen removal.
Collapse
Affiliation(s)
- Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Biao Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiaojing Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Liu F, Xu H, Shen Y, Li F, Yang B. Rapid start-up strategy and microbial population evolution of anaerobic ammonia oxidation biofilm process for low-strength wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130201. [PMID: 38092077 DOI: 10.1016/j.biortech.2023.130201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The implementation of the anaerobic ammonium oxidation (anammox) process in treating low-strength wastewater is limited by the difficulty in enriching anammox bacteria (AnAOB). Here, the first enrichment of AnAOB at a high nitrogen (N) loading rate (NLR) as a strategy was proposed to achieve the rapid start-up of the anammox biofilm process treating low-strength wastewater. The long-term stability of the anammox biofilm process after start-up operating at a low NLR of 0.2-0.4 kg N/(m3⋅d) was evaluated. Results showed that the N removal efficiency was up to 75 % under a low NLR of 0.2 kg N/(m3⋅d) condition. Low-strength organic matter promoted the metabolic coupling between partial denitrifying bacteria (PDB) and AnAOB. The genus Candidatus Brocadia as AnAOB (18 %-27 %) can coexist with Limnobacter (PDB, 9 %-12 %) for efficient N removal. This study offers a rapid start-up strategy of anammox biofilm process in treating low-strength wastewater.
Collapse
Affiliation(s)
- Fangjian Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hui Xu
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yunling Shen
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fang Li
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
19
|
Zhang J, Li X, Du R, Li X, Zhang Q, Peng Y. Rapid formation of denitrification granules for nitrite accumulation by increasing nitrogen loading rates and resistance to industrial wastewater. BIORESOURCE TECHNOLOGY 2024; 394:130238. [PMID: 38142908 DOI: 10.1016/j.biortech.2023.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The nitrite (NO2-) accumulation in partial denitrification (PD) offers the possibility of widespread application of anammox process. In this study, the rapid establishment of PD granular system was achieved by increasing nitrogen loading rates (NLR) from 0.9 to 4.8 kg N/(m3·d), with the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 87.0 % within 18 days. Growth evidence indicated that the functional genus Thauera was significantly enriched (12.5 %→76.4 %), with nitrate (NO3-) reduction rates (SNO3) improving by 5.4 times from 13.0 to 70.7 mg N/(g VSS·h). Importantly, the rapid aggregation of PD biomass as granules ensured robustness and resistance of PD feeding with the electroplating tail wastewater (NO3--N of 103.0 ± 5.0 mg/L), obtaining stable NTR above 91.5 %. This study demonstrated the achievability of the fast development of PD granules and the adaptability and robustness of treating nitrate-containing industrial wastewater, which provided a promising method for efficient nitrogen transformation in industrial applications.
Collapse
Affiliation(s)
- Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
20
|
Hou X, Li X, Zhu X, Li W, Kao C, Peng Y. Advanced nitrogen removal from municipal wastewater through partial nitrification-denitrification coupled with anammox in step-feed continuous system. BIORESOURCE TECHNOLOGY 2024; 391:129967. [PMID: 37923230 DOI: 10.1016/j.biortech.2023.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Combined partial nitrification-denitrification/anammox (PN-PD/A) processes have attracted great attention from researchers in recent years to achieve high nitrogen removal from low carbon /nitrogen (C/N) municipal wastewater. In this context, a step-feed anoxic/oxic (A/O) process was conducted in this study through the combination of the partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) to remove N from municipal wastewater with low C/N. The enhancement of the PN-PD/A process resulted in N removal efficiency of 85.6% at C/N of 2.8. The contributions of the anammox reached 36.4 and 8.8% in the anoxic and oxic chambers, respectively. The biocarriers added to the anoxic and oxic chambers increased the relative abundance of the anammox bacteria in biofilms from 0.61% to 1.51% and 1.02%, respectively. This study demonstrated that employing the step-feed A/O process can create optimal conditions for the anammox bacteria growth, thereby ensuring advanced N removal from low C/N municipal wastewater.
Collapse
Affiliation(s)
- Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiaorong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, China; Beijing Diabetes Institute, Beijing 100730, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Wang Z, Liang H, Yan Y, Li X, Zhang Q, Peng Y. Stimulating extracellular polymeric substances production in integrated fixed-film activated sludge reactor for advanced nitrogen removal from mature landfill leachate via one-stage double anammox. BIORESOURCE TECHNOLOGY 2024; 391:129968. [PMID: 37925083 DOI: 10.1016/j.biortech.2023.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Introducing carbon sources to achieve nitrogen removal from mature landfill leachate not only increases the costs and carbon emissions but also inhibits the activity of autotrophic bacteria. Thus, this study constructed a double anammox system that combines partial nitrification-anammox (PNA) and endogenous partial denitrification-anammox (EPDA) within an integrated fixed-film activated sludge (IFAS) reactor. In this system, PNA primarily contributes to nitrogen removal pathways, achieving a nitrite accumulation rate of 98.23%. The production of extracellular polymer substances (EPS) in the IFAS reactor is stimulated by introducing co-fermentation liquid. Through the utilization of EPS, the system effectively achieves EPDA with the nitrite transformation rate of 97.20%. Under the intermittent aeration operation strategy, EPDA combined with PNA and anammox in the oxic and anoxic stages enhanced the nitrogen removal efficiency of the system to 99.70 ± 0.12%. The functional genus Candidatus kuenenia became enriched in biofilm sludge, while Thauera and Nitrosomonas predominated in floc sludge.
Collapse
Affiliation(s)
- Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
22
|
Zhao Q, Zhang L, Li J, Jia T, Deng L, Liu Q, Sui J, Zhang Q, Peng Y. Carbon-Restricted Anoxic Zone as an Overlooked Anammox Hotspot in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21767-21778. [PMID: 38096549 DOI: 10.1021/acs.est.3c07017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The anoxic zone serves as the core functional unit in municipal wastewater treatment plants (MWWTPs). Unfortunately, in most cases, the downstream range of the anoxic zone is severely lacking in available organic carbon and thus contributes little to the removal of nutrients. This undesirable range is termed the "carbon-restricted anoxic zone", representing an insurmountable drawback for traditional MWWTPs. This study uncovers a previously overlooked role for the carbon-restricted anoxic zone: a hotspot for anaerobic ammonium oxidation (anammox). In a continuous-flow pilot-scale plant treating municipal wastewater (55 m3/d), virgin biocarriers were introduced into the carbon-restricted anoxic zone (downstream 25% of the anoxic zone with BOD5 of 5.9 ± 2.3 mg/L). During the 517-day monitoring, anammox bacteria highly self-enriched within the biofilms, with absolute and relative abundance reaching up to (9.4 ± 0.1) × 109 copies/g-VSS and 6.17% (Candidatus Brocadia), respectively. 15N isotopic tracing confirmed that anammox overwhelmingly dominated nitrogen metabolism, responsible for 92.5% of nitrogen removal. Following this upgrade, the contribution ratio of the carbon-restricted anoxic zone to total nitrogen removal increased from 9.2 ± 4.1% to 19.2 ± 4.2% (P < 0.001), while its N2O emission flux decreased by 84.5% (P < 0.001). These findings challenge stereotypes about the carbon-restricted anoxic zone and highlight the multiple environmental implications of this newfound anammox hotspot.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|