1
|
Lu X, Qiu S, Li Z, Ge S. Pathways, challenges, and strategies for enhancing anaerobic production of short-chain and medium-chain carboxylic acids from algal slurry derived from wastewater. BIORESOURCE TECHNOLOGY 2024; 413:131528. [PMID: 39321935 DOI: 10.1016/j.biortech.2024.131528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Algal slurry (AS) generated from microalgae-based wastewater treatment processes holds significant potential for carboxylic acids production through anaerobic digestion (AD), which have emerged as promising products due to their high energy density, great economic value, and versatile applications. A comprehensive analysis of the pathways and optimization strategies for producing short-chain (SCCAs) and medium-chain (MCCAs) carboxylic acids using AS substrates is presented in this review. It begins by introducing and comparing two types of microalgae-based wastewater treatment processes: the microalgae process and the microalgal-bacterial consortia process. Afterwards, the review systematically examines the metabolic pathways involved in SCCAs and MCCAs production using AS substrates. Moreover, pretreatment strategies for enhancing the release of organic matter are critically discussed. Ultimately, specific emphasis is placed on addressing technical challenges and discussing future perspectives. This review provides a deeper understanding of the mechanisms and strategies involved in carboxylic acids production from wastewater-generated AS.
Collapse
Affiliation(s)
- Xiyang Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zimu Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
2
|
Zhuang X, Wang D, Jiang C, Wang X, Yang D, Zhang W, Wang D, Xu S. Achieving partial nitrification by sludge treatment using sulfide: Optimal conditions determination, long-term stability evaluation and microbial mechanism exploration. BIORESOURCE TECHNOLOGY 2024; 408:131207. [PMID: 39098354 DOI: 10.1016/j.biortech.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
This study proposes an innovative strategy for achieving PN in synthetic domestic wastewater by side-stream sludge treatment using sulfide as the sole control factor. By conducting controllable batch experiments and response surface analysis, optimal sulfide treatment conditions were firstly determined as 90 mg/L of sulfide, 7.5 of pH, 100 rpm of rotation and 12 h of treatment time. After treatment, half of ammonia oxidizing bacteria (AOB) activity remained, but nitrite oxidizing bacteria (NOB) activity was barely detected. Nitrite accumulation rate of long-term running PN steadily reached 83.9 % with 99.1 % of ammonia removal efficiency. Sulfide treatment increased community diversity and facilitated stability of microbiota functioning with PN phenotype, which might be sustained by the positive correlation between ammonia oxidation gene (amoA) and sulfur oxidation gene (soxB). Correspondingly, the network analysis identified the keystone microbial taxa of persistent PN microbiota as Nitrosomonas, Thauera, Truepera, Defluviimonas and Sulitalea in the later stage of long-term reactor.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hang Zhou 310058, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Yu S, Chen Z, Li M, Qiu S, Lv Z, Ge S. Principles, challenges, and optimization of indigenous microalgae-bacteria consortium for sustainable swine wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 406:131055. [PMID: 38944316 DOI: 10.1016/j.biortech.2024.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.
Collapse
Affiliation(s)
- Sheng Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Zhe Lv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
4
|
Bhatt P, Brown PB, Huang JY, Hussain AS, Liu HT, Simsek H. Algae and indigenous bacteria consortium in treatment of shrimp wastewater: A study for resource recovery in sustainable aquaculture system. ENVIRONMENTAL RESEARCH 2024; 250:118447. [PMID: 38341075 DOI: 10.1016/j.envres.2024.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Shrimp production facilities produce large quantities of wastewater, which consists of organic and inorganic pollutants. High concentrations of these pollutants in shrimp wastewater cause serious environmental problems and, therefore, a method of treating this wastewater is an important research topic. This study investigated the impact of algae and indigenous bacteria on treating shrimp wastewater. A total of four different microalgae cultures, including Chlorococcum minutus, Porphyridum cruentum, Chlorella vulgaris and Chlorella reinhardtii along with two cyanobacterial cultures, Microcystis aeruginosa and Fishcherella muscicola were used with indigenous bacterial cultures to treat shrimp wastewater. The highest soluble chemical oxygen demand (sCOD) removal rate (95%) was observed in the samples that were incubated using F. muscicola. Total dissolved nitrogen was degraded >90% in the C. vulgaris, M. aeruginosa, and C. reinhardtii seeded samples. Dissolved organic nitrogen removal was significantly higher for C. vulgaris (93%) as compared to other treatments. Similarly, phosphate degradation was very successful for all the algae-bacteria consortium (>99%). Moreover, the degradation kinetics were calculated, and the lowest half-life (t1/2) for sCOD (5 days) was recorded for the samples seeded with M. aeruginosa. Similarly, treatment with F. muscicola and C. reinhardtii showed the lowest t1/2 of NH3-N (2.9 days) and phosphate (2.7 days) values. Overall, the results from this study suggest that the symbiotic relationship between indigenous bacteria and algae significantly enhanced the process of shrimp wastewater treatment within 21 days of incubation. The outcome of this study supports resource recovery in the aquaculture sector and could be beneficial to treat a large-scale shrimp facility's wastewater worldwide.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, W. Lafayette, IN, USA
| | - Aya S Hussain
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA; Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Henry T Liu
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA.
| |
Collapse
|
5
|
Li M, Chen Z, Zhou D, Xu S, Qiu S, Ge S. Coagulation pretreatment coupled with indigenous microalgal-bacterial consortium system for on-site treatment of rural black wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169728. [PMID: 38160812 DOI: 10.1016/j.scitotenv.2023.169728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Improper treatment of rural black wastewater (RBW) presents substantial challenges, including the wastage of resource, environmental contamination, and economic consequences. This study proposed an integrated process for RBW treatment, consisting of coagulation/flocculation (C/F) pretreatment and subsequent inoculation of indigenous microalgal-bacterial consortium (IMBC) for nitrogen recovery, namely C/F-IMBC process. Specifically, the optimal C/F conditions (polyaluminium chloride of 4 g/l, polyacrylamide of 50 mg/l, and pH of 6) were determined through a series of single-factor experiments, considering CN, turbidity, and dissolved organic matter (DOM) removal, economic cost, and potential influence on the water environment. Compared to the sole IMBC system for RBW treatment, the proposed C/F-IMBC process exhibited a remarkable 1.23-fold increase in microalgal growth and a substantial 17.6-22.6 % boost in nitrogen recovery. The altered RBW characteristic induced by C/F pretreatment was supposed to be responsible for the improved system performance. In particular, the abundance of DOM was decreased and its composition was simplified after C/F pretreatment, based on the analysis for excitation-emission matrices with parallel factor and gas chromatography-mass spectrometry, thus eliminating the potential impacts of toxic DOM components (e.g., Bis(2-ethylhexyl) phthalate) on IMBC activity. It should also be noted that C/F pretreatment modified microbial community structure as well, thereby regulating the expression of nitrogen-related genes and enhancing the system nitrogen recovery capacity. For instance, the functional Cyanobacteria responsible for nutrient recovery was enriched by 1.95-fold and genes involved in the assimilatory nitrate reduction to ammonia pathway were increased by 1.52-fold. These fundamental findings are expected to offer insights into the improvement of DOM removal and nitrogen recovery for IMBC-based wastewater treatment system, and provide valuable guidance for the development of sustainable on-site RBW treatment technologies.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
6
|
Fan J, Yuan W, Zhang X, Ji B, Du X. Oxygen affinity and light intensity induced robust phosphorus removal and fragile ammonia removal in a non-aerated bacteria-algae system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169013. [PMID: 38040345 DOI: 10.1016/j.scitotenv.2023.169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Non-aerated bacteria-algae system gaining O2 through photosynthesis presents an alternative for costly mechanical aeration. This study investigated oxygen supply and performance of nutrients removal at low and high light intensity (LL and HL). The results showed that P removal was high and robust (LL 97 ± 1.8 %, HL 95 % ± 2.9 %), while NH4+-N removal fluctuated dramatically (LL 66 ± 14.7 %, HL 84 ± 8.6 %). Oxygen generated at illumination of 200 μmol m-2 s-1, 6 h was sufficient to sustain aerobic phase for 2.25 g/L MLSS. However, O2 produced by algae was preferentially captured in the order of heterotrophic bacteria (HB), ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB). Oxygen affinity coupled with light intensity led to NOB suppression with stable nitrite accumulation ratio of 57 %. Free nitrous acid (FNA) and light stimulated the abundance of denitrifying polyphosphate accumulating organism (DPAO) of Flavobacterium, but with declined P-accumulating metabolism (PAM) of P release, P/C, K/P and Mg/P ratios. Flavobacterium and cyanobacteria Leptolyngbya, along with biologically induced CaP in extracellular polymeric substances was the key to robust P removal. AOB of Ellin6067 and DPAO of Flavobacteria offer a promising scenario for partial nitrification-denitrifying phosphorus removal.
Collapse
Affiliation(s)
- Jie Fan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Wu Yuan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xujie Zhang
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xingyu Du
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
7
|
Zou X, Zhao S, Xu K, Fang C, Shen Z, Yan C, Dong L, Qin Z, Zhao X, Zhao J, Liang X. Eco-friendly microalgae harvesting using lipid-cored particles with a comparative life-cycle assessment. BIORESOURCE TECHNOLOGY 2024; 392:130023. [PMID: 37972903 DOI: 10.1016/j.biortech.2023.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
This study proposed an innovative approach using lipid-cored particles (LCPs) aimed at addressing the efficiency, cost, and environmental impact challenges in microalgae harvesting. Cetyltrimethylammonium bromide (CTAB) and chitosan (CS) were used to modify LCPs and to optimize efficiency and investigate the mechanisms of harvesting with Chlorella vulgaris. Results showed that a maximum harvesting efficiency of 97.14 % was achieved using CS-LCPs. Zeta potential and microscopic images revealed the presence of embedded CS-LCPs within microalgal flocs. Fractal dimension data suggested looser aggregates of CS-LCPs and Chlorella vulgaris, corroborated by Excitation-emission matrices (EEM) analysis further confirmation the presence of bridging networks. Moreover, life cycle assessment of five harvesting methods pointed freshwater ecotoxicity potential (FEP) and terrestrial ecotoxicity potential (TEP) as major environmental impacts, mainly from flocculant use, carrier production, and electricity consumption. Notably, LCPs showed the lowest global warming potential (GWP) at 1.54 kg CO2 eq, offering a viable, low-carbon, cost-effective harvesting alternative.
Collapse
Affiliation(s)
- Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shaohua Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Kaiwei Xu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhou Shen
- School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Chang Yan
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Liming Dong
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhaoyue Qin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xinyue Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiajia Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xiongbo Liang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|