1
|
Parveen N, Naik SVCS, Vanapalli KR, Sharma HB. Bioplastic packaging in circular economy: A systems-based policy approach for multi-sectoral challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173893. [PMID: 38889821 DOI: 10.1016/j.scitotenv.2024.173893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Bioplastics have long been publicized as a sustainable plastic packaging alternative; however, their widespread industrialization is still embryonic due to complex challenges spanning multiple sectors. This review critically analyses the bioplastic lifecycle and provides a holistic evaluation of both the opportunities and potential trade-offs along their value chain. Their lifecycle is divided into three sectors: 1) resources, extraction, and manufacturing, 2) product consumption which discusses availability, consumer perception, and marketing strategies, and 3) end-of-life (EoL) management which includes segregation, recycling, and disposal. In the production phase, the primary challenges include selection of suitable raw feedstocks and addressing the techno-economic constraints of manufacturing processes. To tackle these challenges, it is recommended to source sustainable feedstocks from innovative, renewable, and waste materials, adopt green synthesis mechanisms, and optimize processes for improved efficiency. The consumption phase encompasses challenges related to market availability, cost competitiveness, and consumer perception of bioplastics. Localizing feedstock sourcing and production, leveraging the economics of scale, and promoting market demand for recycled bioplastics can positively influence the market dynamics. Additionally, dispelling misconceptions about degradability through proper labeling, and employing innovative marketing strategies to enhance consumer perception of the mechanical performance and quality of bioplastics is crucial. During the EoL management phase, major challenges include inadequate awareness, inefficient segregation protocols, and bioplastics with diverse properties that are incompatible with existing waste management infrastructure. Implementing a standardized labeling system with clear representation of suitable EoL techniques and integrating sensors and machine learning-based sorting technologies will improve segregation efficiency. Further, establishing interconnected recycling streams that clearly define the EoL pathways for different bioplastics is essential to ensure circular waste management systems. Finally, designing a comprehensive systems-based policy framework that incorporates technical, economic, environmental, and social drivers is recommended to promote bioplastics as a viable circular packaging solution.
Collapse
Affiliation(s)
- Naseeba Parveen
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India
| | - S V Chinna Swami Naik
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India.
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Rangpo, Sikkim 737136, India
| |
Collapse
|
2
|
Wang W, Kong H, Wang J, Zhang G, Shen F, Liu F, Huang Z. Lanthanum-calcium bimetallic-modified attapulgite- chitosan hydrogel beads for efficient phosphate removal from water: Performance evaluation, mechanistic and life cycle assessment. Carbohydr Polym 2024; 338:122183. [PMID: 38763721 DOI: 10.1016/j.carbpol.2024.122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Phosphorus is a critical factor in the control of eutrophication. We developed a three-dimensional porous, bimetallic-modified adsorbent La-Ca-CS/ATP to remove excess phosphate from water. Langmuir model showed that the theoretical adsorption capacity of La-Ca-CS/ATP was up to 123 mg P/g. The amount of La and Ca leached by La-Ca-CS/ATP was small, and the adsorption of 36.08 mg P/g was maintained during the five cycles of La-Ca-CS/ATP. The La-Ca-CS/ATP adsorption mechanism mainly involved surface precipitation, ligand exchange, electrostatic attraction, and inner-sphere complexation. Molecular dynamics demonstrated that La and Ca had complementary effects on binding sites and energy barriers within the range of 0.5-0.7 nm and 1.2-2 nm, enhancing the adsorption effect of La-Ca-CS/ATP. The life cycle assessment results showed that adding calcium could help reduce the environmental impact of lanthanum and chitosan. The production of La-Ca-CS/ATP adsorbed 73.88 P mg/g and emitted 24.73 kg CO2 eq, which was less than other adsorbents.
Collapse
Affiliation(s)
- Weihan Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hao Kong
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Gengtao Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fang Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhiping Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory for Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
3
|
Liu Z, Luo F, He L, Wang S, Wu Y, Chen Z. Physical conditioning methods for sludge deep dewatering: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121207. [PMID: 38788408 DOI: 10.1016/j.jenvman.2024.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Sludge is an inevitable waste product of sewage treatment with a high water content and large volume, it poses a significant threat of secondary pollution to both water and the atmosphere without proper disposal. In this regard, dewatering has emerged as an attractive method in sludge treatment, as it can reduce the sludge volume, enhance its transportability and calorific value, and even decrease the production of landfill leachate. In recent years, physical conditioning methods including non-chemical conditioners or energy input alone, have been extensively researched for their potential to enhance sludge dewatering efficiency, such as thermal treatment, freeze-thaw, microwave, ultrasonic, skeleton builders addition, and electro-dewatering, as well as combined methods. The main objective of this paper is to comprehensively evaluate the dewatering capacity of various physical conditioning methods, and identify key factors affecting sludge dewatering efficiency. In addition, future research anticipated directions and outlooks are proposed. This work is expected to provide valuable insights for developing efficient, eco-friendly, and low-energy consumption techniques for deep sludge dewatering.
Collapse
Affiliation(s)
- Zhuo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingzhi He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siqi Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Yao Y, Zhao W, Liu C, Gao J, Yang X, Xiao C, Qi J, Zhou Y, Zhu Z, Yang Y, Li J. Iron containing sludge-derived carbon towards efficient peroxymonosulfate activation: Active site synergy, performance and alternation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170183. [PMID: 38246367 DOI: 10.1016/j.scitotenv.2024.170183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Converting industrial sludge into catalytic materials for water purification is a promising approach to simultaneously realize effective disposal of sludge and resource of water. However, manipulating the high efficiency remains a huge challenge due to the difficulty in the active sites control of the sludge. Herein, we proposed a constitutive modulation strategy by the combination of hydrothermal and pyrolysis (HTP) for the fabrication of defects-assistant Fe containing sludge-derived carbon catalysts on upgrading performance in peroxymonosulfate (PMS) activation for pollutant degradation. Adjustable defects on dyeing sludge-derived carbon catalysts (DSCC) were achieved by introducing oxygen or nitrogen functional precursors (hydroquinone or p-phenylenediamine) during hydrothermal processes and by further pyrolysis, where O was detrimental while N was beneficial to defect generation. Compared to the DSCC with less defects (DHSC-O), the defect-rich sample (DHSC-2N) exhibited superior catalytic performance of PMS activation for bisphenol A (BPA) elimination (k = 0.45 min-1, 2.52 times of DHSC-O), as well as 81.4% total organic carbon (TOC) removal. Meanwhile, the degradation capacity was verified in wide pH range (2.1-8.1) and various aqueous matrices, reflecting the excellent adaptability and anti-interference performance. Furthermore, the continuous-flow experiments on industrial wastewater showed synchronous BPA and chemical oxygen demand (COD) removal, implying great potential for practical application. Solid electron paramagnetic resonance (EPR) and 57Fe Mösssbauer spectra analysis indicated that the defects acted as secondary active sites for Fe sites, which were beneficial to accelerating the electron transfer process. The only Fe active sites preferred the radical pathway. The controllable reaction tendency provides possibilities for the on-demand design of sludge-based catalysts to meet the requirements of practical wastewater treatment under Fenton-like reaction.
Collapse
Affiliation(s)
- Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenyu Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuquan Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiamin Gao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuran Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Fonoll X, Zhu K, Aley L, Shrestha S, Raskin L. Simulating Rumen Conditions Using an Anaerobic Dynamic Membrane Bioreactor to Enhance Hydrolysis of Lignocellulosic Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1741-1751. [PMID: 38184844 DOI: 10.1021/acs.est.3c06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An anaerobic dynamic membrane bioreactor (AnDMBR) mimicking rumen conditions was developed to enhance the hydrolysis of lignocellulosic materials and the production of volatile fatty acids (VFAs) when treating food waste. The AnDMBR was inoculated with cow rumen content and operated at a 0.5 day hydraulic retention time, 2-4 day solids retention time, a temperature of 39 °C, and a pH of 6.3, characteristics similar to those of a rumen. Removal rates of neutral detergent fiber and acid detergent fiber of 58.9 ± 8.4 and 69.0 ± 8.6%, respectively, and a VFA yield of 0.55 ± 0.12 g VFA as chemical oxygen demand g volatile solids (VS)fed-1 were observed at an organic loading rate of 18 ± 2 kg VS m-3 day-1. The composition and activity of the microbial community remained consistent after biofilm disruption, bioreactor upset, and reinoculation. Up to 66.7 ± 5.7% of the active microbial populations and 51.0 ± 7.0% of the total microbial populations present in the rumen-mimicking AnDMBR originated from the inoculum. This study offers a strategy to leverage the features of a rumen; the AnDMBR achieved high hydrolysis and fermentation rates even when treating substrates different from those fed to ruminants.
Collapse
Affiliation(s)
- Xavier Fonoll
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Energy Research & Innovation, Great Lakes Water Authority, 9300 W Jefferson Avenue, Detroit, Michigan 48209, United States
| | - Kuang Zhu
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucy Aley
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shilva Shrestha
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|