1
|
Wang M, Liu X, Zhang M, Han Q, Chen B, Cao S, Liu B, Wang Z. Comparison of microplastics heteroaggregation with MoS 2 and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137063. [PMID: 39754878 DOI: 10.1016/j.jhazmat.2024.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS2 and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles. More importantly, the deposition and transport of MPs are highly dependent on the configuration of the resulting aggregates. MoS2 nanosheets conformally coat MPs, forming compact and colloidally stable complexes that completely alter the MPs' surface to the negatively charged MoS2. The interaction resulted in high mobility and minimal deposition in environmental matrices. In contrast, GO nanosheets bridge MPs into large clusters, reducing transport and increasing deposition. This difference in aggregate configuration is attributed to the distinct interactions between the nanosheets and MPs: rigid MoS2 nanosheets adhere via strong van der Waals forces, while GO, with oxygen functional groups on its edges and surfaces, folds and crosslinks between particles upon adsorption. These findings underscore the critical role of 2D materials in shaping the environmental fate of MPs, advancing our knowledge on the aggregation process.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyu Cao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zi S, Wu D, Zhang Y, Jiang X, Liu J. Insights into the controlling factors of the transport of tire wear particles in saturated porous media: The facilitative role of aging and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175665. [PMID: 39181254 DOI: 10.1016/j.scitotenv.2024.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The widespread distribution and potential adverse effects of tire wear particles (TWPs) on soil and groundwater quality pose a growing environmental concern. This study investigated the transport behavior of TWPs in saturated porous media and elucidated the underlying mechanisms influenced by environmental factors. Additionally, the effects of key environmental factors, such as aging, ionic strength, cation species, medium type, and natural organic matter (NOM), on the transport of TWPs were evaluated. The results showed that aging processes simulated through O3 and UV irradiation altered the physicochemical properties of TWPs, increased the mobility of TWPs at low ionic strengths. However, the high ionic strengths and the presence of Ca2+ significantly inhibited the mobility of TWPs due to enhanced aggregation. The transport mechanism of the original and aged TWPs shifted from blocking to ripening under favorable retention conditions (i.e., high ionic strengths, divalent cations, and fine sands). Interestingly, the presence of fulvic acid (FA) inhibited the ripening of the three TWPs, significantly promoting their transport through a spatial site resistance mechanism. The two-site kinetic attachment model (TSKAM), extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and colloid filtration theory (CFT) were applied to describe the transport behavior of the TWPs. The study provided a comprehensive understanding of the transport behavior of TWPs in groundwater environments, highlighting the environmental risks associated with their widespread distribution.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiangtao Jiang
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Zeng D, Chen C, Huang Z, Gu J, Zhang Z, Cai T, Peng J, Huang W, Dang Z, Yang C. Influence of macromolecules and electrolytes on heteroaggregation kinetics of polystyrene nanoplastics and goethite nanoparticles in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135257. [PMID: 39047557 DOI: 10.1016/j.jhazmat.2024.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Fate and transport of nanoplastics in aquatic environments are affected by their heteroaggregation with minerals in the presence of macromolecules. This study investigated the heteroaggregation of polystyrene nanoplastics (PSNPs) with goethite nanoparticles (GNPs) under the influence of macromolecules [humic acid (HA), bovine serum albumin (BSA), and DNA] and electrolytes. Under 1 mg C/L macromolecule, raising electrolyte concentration promoted heteroaggregation via charge screening, except that calcium bridging with HA also enhanced heteroaggregation at CaCl2 concentration above 5 mM. At all NaCl concentrations and CaCl2 concentration below 5 mM, 1 mg C/L macromolecules strongly retarded heteroaggregation, ranking BSA > DNA > HA. Raising macromolecule concentration strengthened such stabilization effect of all macromolecules in NaCl solution and that of DNA and BSA in CaCl2 solution by enhancing steric hindrance. However, 0.1 mg C/L BSA slightly promoted heteroaggregation in CaCl2 solution due to stronger electrostatic attraction than steric hindrance. In CaCl2 solution, raising HA concentration strengthened its destabilization effect via calcium bridging. Macromolecules having more compact globular structure and higher molecular weight may exert greater steric hindrance to inhibit heteroaggregation more effectively. This study provides new insights on the effects of macromolecules and electrolytes on heteroaggregation between nanoplastics and iron minerals in aquatic environments.
Collapse
Affiliation(s)
- Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiamin Peng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zeng D, Yang C, Huang Z, Liu Y, Liu S, Zhang Z, Huang W, Dang Z, Chen C. Heteroaggregation kinetics of nanoplastics and soot nanoparticles in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134564. [PMID: 38743982 DOI: 10.1016/j.jhazmat.2024.134564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Heteroaggregation between polystyrene nanoplastics (PSNPs) and soot nanoparticles (STNPs) in aquatic environments may affect their fate and transport. This study investigated the effects of particle concentration ratio, electrolytes, pH, and humic acid on their heteroaggregation kinetics. The critical coagulation concentration (CCC) ranked CCCPSNPs > CCCPSNPs-STNPs > CCCSTNPs, indicating that heteroaggregation rates fell between homoaggregation rates. In NaCl solution, as the PSNPs/STNPs ratio decreased from 9/1 to 3/7, heteroaggregation rate decreased and CCCPSNPs-STNPs increased from 200 to 220 mM due to enhanced electrostatic repulsion. Outlier was observed at PSNPs/STNPs= 1/9, where CCCPSNPs-STNPs= 170 mM and homoaggregation of STNPs dominated. However, in CaCl2 solution where calcium bridged with STNPs, heteroaggregation rate increased and CCCPSNPs-STNPs decreased from 26 to 5 mM as the PSNPs/STNPs ratio decreasing from 9/1 to 1/9. In composite water samples, heteroaggregation occurred only at estuarine and marine salinities. Acidic condition promoted heteroaggregation via charge screening. Humic acid retarded or promoted heteroaggregation in NaCl or CaCl2 solutions by steric hindrance or calcium bridging, respectively. Other than van der Waals attraction and electrostatic repulsion, heteroaggregation was affected by steric hindrance, hydrophobic interactions, π - π interactions, and calcium bridging. The results highlight the role of black carbon on colloidal stability of PSNPs in aquatic environments.
Collapse
Affiliation(s)
- Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanjun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sijia Liu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
6
|
Yang X, Xu N, Wang X, Yang L, Sun S. Mechanisms of increased small nanoplastic particle retention in water-saturated sand media with montmorillonite and diatomite: Particle sizes, water components, and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133056. [PMID: 38008050 DOI: 10.1016/j.jhazmat.2023.133056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The processes by which small nanoplastics (NPs) accumulate in soil are unclear. To clarify the different deposition processes that affect small NPs (< 30 nm) compared to larger NPs in the soil environment, due to their interaction with clays as major soil components, the transport behavior of two-sized NPs (20 and 80 nm) with two clays (diatomite (Diat) and montmorillonite (Mont)) in NaCl and CaCl2 solutions were investigated in water-saturated quartz sand columns. The experimental results showed that more 20 nm NPs could enter the lattice structure of Diat than Mont in NaCl solution. This contributed to the stronger deposition of 20 nm NPs by Diat on sand, which was associated with a lower k1d/k1 value (obtained from two-site kinetic attachment model). In contrast, 80 nm NPs had a stronger reversible retention than 20 nm NPs with Mont, even though both sizes of NPs-Mont displayed a similar transportability. In CaCl2 solution, the larger NPs-Mont hetero-aggregates formed with a stronger suppressed depth of φmax based on Derjaguin-Landau-Verwey-Overbeek theory. Thus, Mont had a stronger transport inhibition than Diat for both NPs sizes, with a lower k1d/k1. These findings could benefit in predicting the size-based deposition of NPs in a heterogenous soil environment.
Collapse
Affiliation(s)
- Xiangrong Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuelian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Yang
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Siyi Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|