1
|
Yang Z, Charoenkal K, Wang Z, Xu Y, Li T, Xu T, Li Q, Sun X, Lin S, Cao H. Ammonium recovery from wastewater by biochar with different N/O-doped groups and hierarchical pores: Synergistic enhancement mechanisms for strong negative electrostatic potential and micropore filling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125776. [PMID: 40378783 DOI: 10.1016/j.jenvman.2025.125776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/22/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Biochar has shown considerable potential for removing ammonium (NH4+) from wastewater, supporting sustainable pollution control and nutrient recovery. However, optimizing biochar structure remains challenging, especially concerning the interplay between pore structure, surface functional groups, and NH4+ adsorption mechanisms. This study addresses these challenges by investigating the adsorption mechanism of NH4+ on biochar with nitrogen (N)- and oxygen (O)-doped groups, as well as hierarchical pores, through density functional theory (DFT) calculations and molecular dynamics (MD) simulations. The results reveal a significant enhancement in NH4+ saturation adsorption, increasing from 2 mg/g to 11.7 mg/g. N-doped groups may enhance or inhibit adsorption, influenced by their specific electrostatic potentials. In contrast, O-doped groups provide stable and effective adsorption through their strong negative charges. Hierarchical pores facilitate NH4+ transport and maximize the utilization of adsorption sites, substantially enhancing removal efficiency. Moreover, the micropore filling mechanism plays a pivotal role, especially in biochar with a high micropore concentration, further improving adsorption capacity. These findings deepen the understanding of adsorption mechanisms and underscore the potential of engineered biochar for effective ammonium recovery from wastewater, advancing environmental sustainability.
Collapse
Affiliation(s)
- Zhengming Yang
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Khantaphong Charoenkal
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Zhuochao Wang
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Yang Xu
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Taiwen Li
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Tianyu Xu
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Qiang Li
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China
| | - Shan Lin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China.
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Sun Q, Zhang Z, Ping Q, Wang L, Li Y. Insight into using multi-omics analysis to elucidate nitrogen removal mechanisms in a novel improved constructed rapid infiltration system: Functional gene and metabolite signatures. WATER RESEARCH 2024; 267:122502. [PMID: 39332349 DOI: 10.1016/j.watres.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
In this study, a laboratory-scale improved constructed rapid infiltration (imCRI) system with non-saturated and saturated layers was constructed, and corn cobs as solid carbon source were added to the saturated layer to enhance the removal of nitrogen. Combined analyses of metagenomics and metabolomics were conducted to elucidate the nitrogen removal mechanism in the imCRI system. The results showed that the hydraulic load significantly influenced the treatment performance of the imCRI system, and a hydraulic load of 1.25 m3/(m2⋅d) was recommended. Under optimal conditions, the imCRI system using simulated wastewater achieved average removal efficiencies of 97.8 % for chemical oxygen demand, 85.7 % for total nitrogen (TN), and 97.6 % for ammonia nitrogen. Metagenomic and metabolomic analyses revealed that besides nitrification and denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anammox, etc., are also involved in nitrogen metabolism in the imCRI system. Although nitrification was the predominant pathway in the non-saturated layer, aerobic denitrification also occurred, accounting for 22.59 % of the TN removal. In the saturated layer, nitrogen removal was attributed to synergistic effects of denitrification, DNRA and anammox. Moreover, correlation analysis among nitrogen removal, functional genes and metabolites suggested that metabolites related to the tricarboxylic acid cycle generated from the glycolysis of corn cobs provided sufficient energy for denitrification. Our results can offer a promising technology for decentralized wastewater treatment with stringent nitrogen removal requirements, and provide a foundation for understanding the underlying nitrogen transformation and removal mechanism.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
3
|
Yang P, Li J, Hou R, Yuan R, Chen Y, Liu W, Yu G, Wang W, Zhou B, Chen Z, Chen H. Mitigating N 2O emissions in land treatment systems: Mechanisms, influences, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175638. [PMID: 39168319 DOI: 10.1016/j.scitotenv.2024.175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Land treatment systems (LTS) are widely used in decentralized domestic wastewater treatment due to low energy requirements and effective treatment outcomes. However, LTS operations are also a significant source of N2O emissions, a potent greenhouse gas threatening the ozone layer and posing risks to human health. Despite the importance of understanding and controlling N2O emissions, existing literature lacks comprehensive analyses of the mechanisms driving N2O generation and effective control strategies within LTS. This study addresses this gap by reviewing current research and identifying key factors influencing N2O emissions in LTS. This review reveals that in addition to traditional nitrification and denitrification processes, co-denitrification and complete ammonia oxidation are crucial for microbial nitrogen removal in LTS. Plant selection is primarily based on their nitrogen absorption capacity while using materials such as biochar and iron can provide carbon sources or electrons to support microbial activities. Optimizing operational parameters is essential for reducing N2O emissions and enhancing nitrogen removal efficiency in LTS. Specifically, the carbon-to‑nitrogen ratio should be maintained between 5 and 12, and the hydraulic loading rate should be kept within 0.08-0.2 m3/(m2·d). Dissolved oxygen and oxidation-reduction potential should be adjusted to meet the aerobic or anaerobic conditions the microorganisms require. Additionally, maintaining a pH range of 6.5-7.5 by adding alkaline substances is crucial for sustaining nitrous oxide reductase activity. The operating temperature should be maintained between 20 and 30 °C to support optimal microbial activity. This review further explores the relationship between environmental factors and microbial enzyme activity, community structure changes, and functional gene expression related to N2O production. Future research directions are proposed to refine N2O flux control strategies. By consolidating current knowledge and identifying research gaps, this review advances LTS management strategies that improve wastewater treatment efficiency while mitigating the environmental and health impacts of N2O emissions.
Collapse
Affiliation(s)
- Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Junhong Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuefang Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weiqing Liu
- Beijing Institute of Geology for Mineral Resources, Yuanlin East Road, Mi Yun, Beijing 101500, China
| | - Guoqing Yu
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Weiqiang Wang
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Zhou X, Li H, Wang A, Wang X, Chen X, Zhang C. Subsurface wastewater infiltration systems for nitrogen pollution control. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11061. [PMID: 38881414 DOI: 10.1002/wer.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Subsurface wastewater infiltration systems (SWISs) are suggested to be a cost-effective and environmentally friendly method for sewage treatment. However, a comprehensive summary of the relevant mechanisms and optimization methods for nitrogen (N) removal in SWIS is currently lacking. In this review, we first summarize the N transformation mechanisms in SWIS. The impact of operational parameters on the N removal efficiency is then delineated. To enhance pollutant removal and minimize resource wastage, it is advisable to maintain a wet-dry ratio of 1:1 and a hydraulic loading rate of 8-10 cm/day. The organic load should be determined based on influent characteristics to optimize the balance between sewage treatment and nitrous oxide (N2O) emission. Finally, various strategies and modifications have been suggested to enhance pollutant removal efficiency and reduce N2O emissions in SWIS, such as artificial aeration, supply electron donors, and well-designed structures. Overall, greater emphasis should be placed on the design and management of SWIS to optimize their co-benefits while effectively controlling N pollution. PRACTITIONER POINTS: SWISs are often considered black boxes with their efficiency depending on hydraulic characteristics, biological characteristics, and substrate properties. Biological nitrification coupled with denitrification is considered to be the major N removal process. Increasing the reduction of N2O to the inert N2 form is a potential mechanism to mitigate global warming. Strategies such as artificial aeration, supply electron donors, and well-designed structures are suggested to improve N removal performance.
Collapse
Affiliation(s)
- Xulun Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resource, Beijing, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Shenyang, Liaoning, China
| | - Xueyan Wang
- School of Energy and Water Resources, Shenyang Institute of Technology, Fushun, China
| | - Xi Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| |
Collapse
|